Skip to main content
Log in

Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This study examines the electro-oxidation (EO) of cyanide originating from an industrial plant´s gold leaching effluent. Experiments were carried out in a laboratory-scale batch cell reactor. Monopolar configuration of electrodes consisting of graphite (anode) and aluminum (cathode) was employed, operating in galvanostatic mode. Response Surface Methodology (RSM), based on a Box–Behnken experimental Design (BBD), was used to optimize the EO operational conditions. Three independent process variables were considered: initial cyanide concentration ([CN]0 = 1000–2000 mg L−1), current density (J =7–107 mA cm−2), and stirring velocity (η = 250–750 rpm). The cyanide conversion \(\left( {X_{{{\text{CN}}^{ - } }} } \right)\), Chemical Oxygen Demand (COD) removal percentage (%RCOD), and specific Energy Consumption per unit mass of removed cyanide (EC) were analyzed as response variables. Multi-objective optimization let to establish the most effective EO conditions ([CN]0 = 1000 mg L−1, J = 100 mA cm−2 and η = 750 rpm). The experimental data (\(X_{{{\text{CN}}^{ - } }}\), %RCOD, and EC) were fitted to second-order polynomial models with adjusted correlation coefficients (\(R_{\text{adj}}^{2}\)) of ca. 98, 99 and 87%, respectively. The kinetic analysis, performed at optimal EO operational conditions, allowed determination of time required to meet Colombian permissible discharge limits. The predictive capacity of kinetic expressions was verified against experimental data obtained for gold leaching effluent. Total cyanide removal and 96% of COD reduction were obtained, requiring EC of 71.33 kWh kg−1 and 180 min. The BOD5 (biological oxygen demand)/COD ratio increased from 4.52 × 10−4 to 0.5573, confirming effluent biodegradability after EO treatment.

Graphic Abstract

The variation of cyanide (CN), cyanate (CNO) and ammonium (NH4+) ions concentrations vs. time at alkaline conditions. EO operational conditions: [CN]0 = 1000 mg/L, J = 100 mA/cm2 , η = 750 rpm, [NaCl] = 0.15 M and pH 11.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirk-Othmer (2002) Encyclopedia of chemical technology. Wiley, Hoboken

    Google Scholar 

  2. Mudder TI, Botz MM, Smith A (2001) Chemistry and treatment of cyanidation wastes. Mining Journal Books Ltd., London

    Google Scholar 

  3. U.S. Department of Health and Human Services (2006) Toxicological profile for Cyanide. https://www.atsdr.cdc.gov/toxprofiles/tp8.pdf. Accessed 02 July 2019

  4. Akcil A (2003) Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol Adv 21:501–511

    Article  CAS  Google Scholar 

  5. Dobrosz-Gómez I, Ramos García BD, Gil Pavas E, Gómez-García MÁ (2017) Kinetic study on HCN volatilization in gold leaching tailing ponds. Miner Eng 110:185–194. https://doi.org/10.1016/j.mineng.2017.05.001

    Article  CAS  Google Scholar 

  6. Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 163:1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051

    Article  CAS  PubMed  Google Scholar 

  7. Ministerio de Ambiente y Desarrollo Sostenible (2015) Resolución 0631 de 2015. https://www.minambiente.gov.co/images/.../app/resoluciones/d1-res_631_marz_2015.pdf. Accessed 02 June 2019

  8. EPA (2017) Laws and Regulations. https://www.epa.gov/laws-regulations Accessed 02 June 2019

  9. Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50:13–29. https://doi.org/10.1016/j.mineng.2013.05.027

    Article  CAS  Google Scholar 

  10. Deveci H, Yazıcı EY, Alp I, Uslu T (2006) Removal of cyanide from aqueous solutions by plain and metal-impregnated granular activated carbons. Int J Miner Process 79:198–208. https://doi.org/10.1016/j.minpro.2006.03.002

    Article  CAS  Google Scholar 

  11. Maulana I, Takahashi F (2018) Cyanide removal study by raw and iron-modified synthetic zeolites in batch adsorption experiments. J Water Process Eng 22:80–86. https://doi.org/10.1016/j.jwpe.2018.01.013

    Article  Google Scholar 

  12. Dai X, Simons A, Breuer P (2012) A review of copper cyanide recovery technologies for the cyanidation of copper containing gold ores. Miner Eng 25:1–13. https://doi.org/10.1016/j.mineng.2011.10.002

    Article  CAS  Google Scholar 

  13. Parga JR, Shukla SS, Carrillo-Pedroza FR (2003) Destruction of cyanide waste solutions using chlorine dioxide, ozone and titania sol. Waste Manag 23:183–191. https://doi.org/10.1016/S0956-053X(02)00064-8

    Article  CAS  PubMed  Google Scholar 

  14. Yeddou AR, Chergui S, Chergui A et al (2011) Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner Eng 24:788–793. https://doi.org/10.1016/j.mineng.2011.02.012

    Article  CAS  Google Scholar 

  15. Carrillo-Pedroza FR, Nava-Alonso F, Uribe-Salas A (2000) Cyanide oxidation by ozone in cyanidation tailings: reaction kinetics. Miner Eng 13:541–548. https://doi.org/10.1016/S0892-6875(00)00034-0

    Article  CAS  Google Scholar 

  16. Akcil A, Mudder T (2003) Microbial destruction of cyanide wastes in gold mining: process review. Biotech Lett 25:445–450. https://doi.org/10.1023/A:1022608213814

    Article  CAS  Google Scholar 

  17. Guamán MP, Nieto DA (2018) Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. J Water Process Eng 23:84–90. https://doi.org/10.1016/j.jwpe.2018.03.008

    Article  Google Scholar 

  18. Malhotra S, Pandit M, Kapoor JC, Tyagi DK (2005) Photo-oxidation of cyanide in aqueous solution by the UV/H2O2 process. J Chem Technol Biotechnol 80:13–19. https://doi.org/10.1002/jctb.1127

    Article  CAS  Google Scholar 

  19. Valiūnienė A, Baltrūnas G, Keršulytė V et al (2013) The degradation of cyanide by anodic electrooxidation using different anode materials. Process Saf Environ Prot 91:269–274. https://doi.org/10.1016/j.psep.2012.06.007

    Article  CAS  Google Scholar 

  20. Abdel-Aziz MH, Bassyouni M, Gutub SA et al (2016) Removal of cyanide from liquid waste by electrochemical oxidation in a new cell design employing a graphite anode. Chem Eng Commun 203:1045–1052. https://doi.org/10.1080/00986445.2015.1135796

    Article  CAS  Google Scholar 

  21. Bakir Öğütveren Ü, Törü E, Koparal S (1999) Removal of cyanide by anodic oxidation for wastewater treatment. Water Res 33:1851–1856. https://doi.org/10.1016/S0043-1354(98)00362-5

    Article  Google Scholar 

  22. Felix-Navarro RM, Wai Lin S, Violante-Delgadillo V et al (2011) Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte aqueous solutions. J Mex Chem Soc 55:51–56

    CAS  Google Scholar 

  23. Pineda CA, Silva S (2007) Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode. Int J Hydrogen Energy 32:3163–3169. https://doi.org/10.1016/j.ijhydene.2006.04.011

    Article  CAS  Google Scholar 

  24. Iordache I, Nechita MT, Rosca I, Aelenei N (2004) Ultrasound assisted electrochemical degradation of cyanides: influence of electrode type. Turk J Eng Environ Sci 28:377–380

    CAS  Google Scholar 

  25. Rice EW, Baird RB, Eaton AD (2017) Standard Methods for the Examination of Water and Wastewater, 23rd Edition. American Water Works Association (AWWA, WEF and APHA), Washington, DC

  26. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ (2017) Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J Environ Manag 191:189–197. https://doi.org/10.1016/j.jenvman.2017.01.015

    Article  CAS  Google Scholar 

  27. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  28. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  29. Montgomery D (2005) Design and analysis of experiments, 5th edn. Wiley, Hoboken

    Google Scholar 

  30. Zarei M, Niaei A, Salari D, Khataee A (2010) Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. J Hazard Mater 173:544–551. https://doi.org/10.1016/j.jhazmat.2009.08.120

    Article  CAS  PubMed  Google Scholar 

  31. Comninellis C, Cheng G (2010) Electrochemistry for the environment. Springer, New York

    Book  Google Scholar 

  32. Zapata A, Malato S, Sanchez-Perez JA et al (2010) Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catal Today 151:100–106. https://doi.org/10.1016/j.cattod.2010.01.034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Universidad Nacional de Colombia—Sede Manizales (Proyecto HERMES-27797) for its financial support of this research. Guillermo Humberto Gaviria was a holder of a fellowship of COLCIENCIAS (Convocatoria Nacional Jóvenes Investigadores e Innovadores año 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Dobrosz-Gómez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrosz-Gómez, I., Gómez García, M.Á., Gaviria, G.H. et al. Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study. J Appl Electrochem 50, 217–230 (2020). https://doi.org/10.1007/s10800-019-01392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01392-1

Keywords

Navigation