Skip to main content
Log in

Highly Selective Lanthanum-Modified Zirconia Catalyst for the Conversion of Ethanol to Propylene: A Combined Experimental and Simulation Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

La/ZrO2 catalysts were prepared by co-precipitation method. The physical and chemical properties of the catalysts were characterized by N2 adsorption–desorption method, X-ray diffraction and temperature programmed desorption. The selective conversions of ethanol to propylene over these synthesized La/ZrO2 catalysts were also investigated. The optimum propylene yield reached 42.3% over La(1)/ZrO2 catalyst. A coordination of redox and acid–base properties accounts for the remarkable improvement of reaction performance over La/ZrO2 catalysts. On the basis of calculation results, the introduction of oxygen vacancy or La results in significant charge transfer. The Lewis acid–base (Zr–O) pair sites become more active as a result of charge transfer over La/ZrO2 catalysts. Furthermore, the formation of O vacancies over La/ZrO2 (101) is easier than that over t-ZrO2(101). Therefore, La modification improves the performance of ZrO2 on conversion of ethanol to propylene.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ren T, Patel M, Blok K (2006) Energy 31:425–451

    Article  CAS  Google Scholar 

  2. Demirbas A (2007) Prog Energy Combust 33:1–18

    Article  CAS  Google Scholar 

  3. Singh R, Shukla A, Tiwari S, Srivastava M (2014) Renew Sustain Energy Rev 32:713–728

    Article  CAS  Google Scholar 

  4. Bai T, Zhang X, Wang F, Qu W, Liu X, Duan C (2016) J Energy Chem 25:545–552

    Article  Google Scholar 

  5. Huangfu J, Mao D, Zhai X, Guo Q (2016) Appl Catal A 520:99–104

    Article  CAS  Google Scholar 

  6. Sousa ZSB, Veloso CO, Henriques CA, Da Silva VT (2016) J Mol Catal A 422:266–274

    Article  CAS  Google Scholar 

  7. Van der Borght K, Galvita VV, Marin GB (2015) Appl Catal A 492:117–126

    Article  CAS  Google Scholar 

  8. Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Catal Today 238:103–110

    Article  CAS  Google Scholar 

  9. Song Z, Liu W, Chen C, Takahashi A, Fujitani T (2013) Reac Kinet Mech Catal 109:221–231

    Article  CAS  Google Scholar 

  10. Furumoto Y, Tsunoji N, Ide Y, Sadakane M, Sano T (2012) Appl Catal A 417–418:137–144

    Article  CAS  Google Scholar 

  11. Meng T, Mao D, Guo Q, Lu G (2012) Catal Commun 21:52–57

    Article  CAS  Google Scholar 

  12. Takahashi A, Xia W, Nakamura I, Shimada H, Fujitani T (2012) Appl Catal A 423–424:162–167

    Article  CAS  Google Scholar 

  13. Duan C, Zhang X, Zhou R, Hua Y, Chen J, Zhang L (2011) Catal Lett 141:1821–1827

    Article  CAS  Google Scholar 

  14. Furumoto Y, Harada Y, Tsunoji N, Takahashi A, Fujitani T, Ide Y, Sadakane M, Sano T (2011) Appl Catal A 399:262–267

    Article  CAS  Google Scholar 

  15. Lu J, Liu Y, Li N (2011) J Nat Gas Chem 20:423–427

    Article  CAS  Google Scholar 

  16. Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J (2010) Fuel 89:3365–3372

    Article  CAS  Google Scholar 

  17. Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77

    Article  CAS  Google Scholar 

  18. Iwamoto M (2015) Catal Today 242:243–248

    Article  CAS  Google Scholar 

  19. Hayashi F, Iwamoto M (2013) ACS Catal 3:14–17

    Article  CAS  Google Scholar 

  20. Mizuno S, Kurosawa M, Tanaka M, Iwamoto M (2012) Chem Lett 41:892–894

    Article  CAS  Google Scholar 

  21. Zaki T (2005) J Colloid Interface Sci 284:606–613

    Article  CAS  PubMed  Google Scholar 

  22. Setoyama T (2006) Catal Today 116:250–262

    Article  CAS  Google Scholar 

  23. Li Y, He D, Zhu Q, Zhang X, Xu B (2004) J Catal 221:584–593

    Article  CAS  Google Scholar 

  24. Teterycz H, Klimkiewicz R, Łaniecki M (2003) Appl Catal A 249:313–326

    Article  CAS  Google Scholar 

  25. Hu Q, Yang L, Fan G, Li F (2016) J Catal 340:184–195

    Article  CAS  Google Scholar 

  26. Wang F, Wei S, Zhang Z, Patzke GR, Zhou Y (2016) Phys Chem Chem Phys 18:6706–6712

    Article  CAS  PubMed  Google Scholar 

  27. Dong L, Jia R, Xin B, Peng B, Zhang Y (2017) Sci Rep 7:40160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamamoto N, Sato S, Takahashi R, Inui K (2006) J Mol Catal A 24:52–59

    Article  CAS  Google Scholar 

  29. Xia W, Wang F, Mu X, Chen K (2017) Fuel Process Technol 166:140–145

    Article  CAS  Google Scholar 

  30. Xue L, Zhang L, Zhang C, Zhao M, Gong M, Chen Y (2011) J Rare Earth 29:544–549

    Article  CAS  Google Scholar 

  31. Bourlange A, Payne DJ, Jacobs RMJ, Egdell RG, Foord JS, Schertel A, Dobson PJ, Hutchison JL (2008) Chem Mater 20:4551–4553

    Article  CAS  Google Scholar 

  32. Kuwahara Y, Kaburagi W, Nemoto K, Fujitani T (2014) Appl Catal A 476:186–196

    Article  CAS  Google Scholar 

  33. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y (1995) Solid State Ion 79:137–142

    Article  CAS  Google Scholar 

  34. Chen L, Jia C, Wang (2008) Rare Metals 27:479–483

    Article  Google Scholar 

  35. Gao Y, Zhang Y, Zhou Y, Zhang C, Zhang H, Zhao S, Fang J, Huang M, Sheng X (2017) J Colloid Interface Sci 503:178–185

    Article  CAS  PubMed  Google Scholar 

  36. Iwamoto M (2015) Catal Today 242:243–248

    Article  CAS  Google Scholar 

  37. Silva-Calpa LDR, Zonetti PC, Oliveira DC, Avillez RR, Appel LG (2016) Catal Today 289:264–272

    Article  CAS  Google Scholar 

  38. McFarland EW, Metiu H (2013) Chem Rev 113:4391–4427

    Article  CAS  PubMed  Google Scholar 

  39. Sushkevich VL, Ivanova II, Tolborg S, Taarning E (2014) J Catal 316:121–129

    Article  CAS  Google Scholar 

  40. Ozturk H, Durandurdu M (2009) Phys Rev B 79:134111

    Article  CAS  Google Scholar 

  41. Bondars B, Heidemane G, Grabis J, Laschke K, Boysen H, Schneider J, Frey F (1995) J Mater Sci 30:1621–1625

    Article  CAS  Google Scholar 

  42. Chen H, Tosoni S, Pacchioni G (2015) J Phys Chem C 119:10856–10868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is a project sponsored by the National Natural Science Foundation of China (Grant 21406269), Shandong Provincial Natural Science Foundation, China (Grant ZR2014BQ012), Scientific Research Foundation for Returned Scholars, Ministry of Education of China (K1504051C), Shandong Provincial Key Research Program (Grant: 2015GSF121017), the Fundamental Research Funds for the Central Universities (19CX02037A, 17CX05016), the International Cooperation and Exchange Funds, China University of Petroleum (East China) (UPCIEF2019005), and the PetroChina Innovation Foundation (2017D-5007-0506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xia.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, W., Wang, F., Wang, L. et al. Highly Selective Lanthanum-Modified Zirconia Catalyst for the Conversion of Ethanol to Propylene: A Combined Experimental and Simulation Study. Catal Lett 150, 150–158 (2020). https://doi.org/10.1007/s10562-019-02916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02916-2

Keywords

Navigation