Skip to main content
Log in

Development of Red Mud Coated Catalytic Filter for NOx Removal in the High Temperature Range of 300–450 °C

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The red mud (RM) coated catalytic filter was developed as efficient multifunctional material to simultaneously remove NOx and dust in the high temperature range of 300–450 °C, which exhibits excellent deNOx activity/durability as well as low pressure drop with more than 80% NO conversion in the presence of H2O/SO2. The performance of the RM coated catalytic filter is obviously superior to that of the reference samples of V–W–Ti and Fe–Ti based filter. The multiple characterization data (including XRD, XRF, BET, SEM, TPX and LPSA) reveals the amorphous state of the RM catalyst with high dispersity of Fe active sites accounts for the high adsorption capacity of NH3 and thus excellent deNOx performance. Moreover, the prepared colloidal RM slurry is very uniform and stable with the smallest average particle size, which reduces the blocking up of the channel of filter and facilitates the decrease of pressure drop as well as the improvement of deNOx activity. The excellent deNOx performance, low pressure drop together with the low cost make the RM coated catalytic filter to be promising application prospect for purification of the high-temperature flue gas with high content of dust such as in cement and glass furnaces.

Graphic Abstract

The preparation of RM catalytic filter and the comparison of SCR performance between three kinds of catalytic filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saracco G, Specchia S, Specchia V (1996) Catalytically modified fly-ash filters for NOx reduction with NH3. Chem Eng Sci 51:5289–5297. https://doi.org/10.1016/s0009-2509(96)00373-9

    Article  CAS  Google Scholar 

  2. Choi JH, Kim SK, Bak YC (2001) The reactivity of V2O5-WO3-TiO2 catalyst supported on a ceramic filter candle for selective reduction of NO. Korean J Chem Eng 18:719–724. https://doi.org/10.1007/bf02706392

    Article  CAS  Google Scholar 

  3. Fino D, Russo N, Saracco G, Specchia V (2004) A multifunctional filter for the simultaneous removal of fly-ash and NOx from incinerator flue gases. Chem Eng Sci 59:5329–5336. https://doi.org/10.1016/j.ces.2004.09.029

    Article  CAS  Google Scholar 

  4. Nacken M, Heidenreich S, Hackel M, Schaub G (2007) Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation. Appl Catal B 70:370–376. https://doi.org/10.1016/j.apcatb.2006.02.030

    Article  CAS  Google Scholar 

  5. Zuercher S, Pabst K, Schaub G (2009) Ceramic foams as structured catalyst inserts in gas-particle filters for gas reactions-effect of backmixing. Appl Catal A 357:85–92. https://doi.org/10.1016/j.apcata.2009.01.020

    Article  CAS  Google Scholar 

  6. Zhang YS, Li CM, Yu C, Tran TS, Guo F, Yang YQ, Yu J, Xu GW (2017) Synthesis, characterization and activity evaluation of Cu-based catalysts derived from layered double hydroxides (LDHs) for DeNOx reaction. Chem Eng J 330:1082–1090. https://doi.org/10.1016/j.cej.2017.08.044

    Article  CAS  Google Scholar 

  7. Park YO, Lee KW, Rhee YW (2009) Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx. J Ind Eng Chem 15(1):36–39. https://doi.org/10.1016/j.jiec.2008.07.009

    Article  CAS  Google Scholar 

  8. Saracco G, Specchia V (1998) Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases. Appl Therm Eng 18:1025–1035. https://doi.org/10.1016/s1359-4311(98)00035-0

    Article  CAS  Google Scholar 

  9. Choi JH, Kim SK, Ha SJ, Park YO (2001) The preparation of V2O5/TiO2 catalyst supported on the ceramic filter candle for selective reduction of NO. Korean J Chem Eng 18:456–462. https://doi.org/10.1007/bf02698290

    Article  CAS  Google Scholar 

  10. Heidenreich S, Nacken M, Hackel M, Schaub G (2008) Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams. Powder Technol 180:86–90. https://doi.org/10.1016/j.powtec.2007.02.033

    Article  CAS  Google Scholar 

  11. Choi JH, Kim JH, Bak YC, Amal R, Scott J (2005) Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature. Korean J Chem Eng 22:844–851. https://doi.org/10.1007/bf02705663

    Article  CAS  Google Scholar 

  12. Kim Y, Choi J, Yu L, Bak Y (2007) Modification of V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature. Solid State Phenom 124:1713–1716. https://doi.org/10.4028/www.scientific.net/SSP.124-126.1713

    Article  Google Scholar 

  13. Kato A, Matsuda S, Nakajima F, Imanari M, Watanabe Y (1981) Reduction of nitric-oxide with ammonia on iron-oxide titanium-oxide catalyst. J Phys Chem 85:1710–1713. https://doi.org/10.1021/j150612a024

    Article  CAS  Google Scholar 

  14. Qi GS, Yang RT (2005) Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 60:13–22. https://doi.org/10.1016/j.apcatb.2005.01.012

    Article  CAS  Google Scholar 

  15. Wan HJ, Wu BS, Zhang CH, Xiang HW, Li YW, Xu BF, Yi F (2007) Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catal Commun 8:1538–1545. https://doi.org/10.1016/j.catcom.2007.01.002

    Article  CAS  Google Scholar 

  16. Liu C, Yang S, Ma L, Peng Y, Hamidreza A, Chang H, Li J (2013) Comparison on the performance of α-Fe2O3 and γ- Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia. Catal Lett 143:697–704. https://doi.org/10.1007/s10562-013-1017-3

    Article  CAS  Google Scholar 

  17. Yang SJ, Liu CX, Chang HZ, Ma L, Qu Z, Yan NQ, Wang CZ, Li JH (2013) Improvement of the activity of gamma-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization. Ind Eng Chem Res 52:5601–5610. https://doi.org/10.1021/ie303272u

    Article  CAS  Google Scholar 

  18. Huang H, Lan Y, Shan W, Qi F, Xiong S, Liao Y, Fu Y, Yang S (2014) Effect of sulfation on the selective catalytic reduction of NO with NH3 over γ-Fe2O3. Catal Lett 144:578–584. https://doi.org/10.1007/s10562-013-1174-4

    Article  CAS  Google Scholar 

  19. Li CM, Zeng H, Liu PL, Yu J, Guo F, Xu GW, Zhang ZG (2017) The recycle of red mud as excellent SCR catalyst for removal of NOx. Rsc Adv 7:53622–53630. https://doi.org/10.1039/c7ra10348d

    Article  CAS  Google Scholar 

  20. Gan LN, Guo F, Yu J, Xu GW (2016) Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors. Catalysts 6:25. https://doi.org/10.3390/catal6020025

    Article  CAS  Google Scholar 

  21. Zhang YS, Li CM, Zeng H, Yu C, Yu J, Yang YQ, Xu GW, Gao SQ (2017) Preparation of V2O5-WO3-TiO2/cordierite based catalytic filter for removal of NOx from flue gas. Chin J Process Eng 17:1249–1256. https://doi.org/10.12034/j.issn.1009-606X.217172

    Article  Google Scholar 

  22. Yu C, Li CM, Zhang YS, Guo F, Yu J, Yang YQ, Xu GW (2018) The effect of ceramic matrices on the dispersion of loaded catalyst and the deNOx activity of catalytic filters. J Chem Ind Eng 69:682–689. https://doi.org/10.11949/j.issn.0438-1157.20170939

    Article  CAS  Google Scholar 

  23. Yang SJ, Yang S, Li JH, Wang CZ, Chen JH, Ma L, Chang HZ, Chen L, Peng Y, Yan NQ (2012) Fe-Ti spinel for the selective catalytic reduction of NO with NH3: mechanism and structure-activity relationship. Appl Catal B 117:73–80. https://doi.org/10.1016/j.apcatb.2012.01.001

    Article  CAS  Google Scholar 

  24. Reiche MA, Maciejewski M, Baiker A (2000) Characterization by temperature programmed reduction. Catal Today 56:347–355. https://doi.org/10.1016/S0920-5861(99)00294-1

    Article  CAS  Google Scholar 

  25. Chen L, Li JH, Ge MF (2009) Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem C 113:21177–21184. https://doi.org/10.1021/jp907109c

    Article  CAS  Google Scholar 

  26. Liu ZM, Su H, Chen BH, Li JH, Woo SI (2016) Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J 299:255–262. https://doi.org/10.1016/j.cej.2016.04.100

    Article  CAS  Google Scholar 

  27. Liu FD, He H, Zhang CB, Feng ZC, Zheng LR, Xie YN, Hu TD (2010) Selective catalytic reduction of NO with NH3 over iron titanate catalyst: catalytic performance and characterization. Appl Catal B 96:408–420. https://doi.org/10.1016/j.apcatb.2010.02.038

    Article  CAS  Google Scholar 

  28. Sastri MV, Viswanath RP, Viswanathan B (1982) Studies on the reduction of iron-oxide with hydrogen. Int J Hydrogen Energy 7:951–955. https://doi.org/10.1016/0360-3199(82)90163-x

    Article  CAS  Google Scholar 

  29. Wang XB, Wu SG, Zou WX, Yu SH, Gui KT, Dong L (2016) Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chin J Catal 37:1314–1323. https://doi.org/10.1016/s1872-2067(15)61115-9

    Article  CAS  Google Scholar 

  30. Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P (2010) High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—part I: V2O5–WO3/TiO2 catalysts. Appl Catal B 95:39–47. https://doi.org/10.1016/j.apcatb.2009.12.007

    Article  CAS  Google Scholar 

  31. Wu GX, Li J, Fang ZT, Lan L, Wang R, Lin T, Gong MC, Chen YQ (2015) Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2-WO3-SiO2 monolith catalysts. Chem Eng J 271:1–13. https://doi.org/10.1016/j.cej.2015.02.012

    Article  CAS  Google Scholar 

  32. Long RQ, Yang RT (1999) Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts. J Catal 186:254–268. https://doi.org/10.1006/jcat.1999.2558

    Article  CAS  Google Scholar 

  33. Zhu L, Zhong ZP, Yang H, Wang CH, Wang LX (2017) DeNO(x) performance and characteristic study for transition metals doped iron based catalysts. Korean J Chem Eng 34:1229–1237. https://doi.org/10.1007/s11814-016-0369-y

    Article  CAS  Google Scholar 

  34. Yang SJ, Wang CZ, Chen JH, Peng Y, Ma L, Chang HZ, Chen L, Liu CX, Xu JY, Li JH (2012) A novel magnetic Fe-Ti-V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range. Catal Sci Technol 2:915–917. https://doi.org/10.1039/c2cy00459c

    Article  CAS  Google Scholar 

  35. Long RQ, Yang RT (2002) Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method. J Catal 207:158–165. https://doi.org/10.1006/jcat.2002.3545

    Article  CAS  Google Scholar 

  36. Dunn JP, Stenger HG, Wachs IE (1999) Oxidation of SO2 over supported metal oxide catalysts. J Catal 181:233–243. https://doi.org/10.1006/jcat.1998.2305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of International Science and Technology Cooperation Program of China (2016YFE0128300), Natural Science Foundation of China (Grant 21601192 and 21878310) and the independent subject from State Key Laboratory of Multi-phase Complex Systems (Grant MPCS-2019-0-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changming Li or Jian Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huangfu, L., Abubakar, A., Li, C. et al. Development of Red Mud Coated Catalytic Filter for NOx Removal in the High Temperature Range of 300–450 °C. Catal Lett 150, 702–712 (2020). https://doi.org/10.1007/s10562-019-02953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02953-x

Keywords

Navigation