Skip to main content
Log in

Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel concept of membrane bioreactor based on polymeric ionic liquids laccase membrane has been implemented in batch process for decolorization of the anthraquinonic dye Remazol Brillant Blue R (RBBR). New laccase immobilization strategy has been optimized by casting the enzyme into a polymeric inclusion membrane (PIM) using ionic liquids (ILs) and polyvinyl chloride (PVC) leading to laccase polymeric IL membrane (PILM). Four different ILs (1-octyl-3-metylimidazolium bis(trifluoromethylsulfonyl)imide, [OMIM][NTF2]; cholinium bis(trifluoromethylsulfonyl)imide, [Ch ol][NTF2]; cholinium dihydrogenphosphate, [Chol][H2PO4] and hydroxyethylammonium formate, [HEA][Fo]) have been screened and mixed to constitute the active phase of the support of PIM. This strategy has been fully succeeded since high laccase immobilization rates were recorded (about 98%) when using the optimal mixture containing three ILs (45% [OMIM][NTf2]/5% [Chol][NTf2]/2.5% [HEA][Fo]) and supplemented by 0.5% glutaraldehyde. It was found that such mixture contributes to increase the stability and reusability of laccase-PILM during eight successive assays in a batch discontinued stirred reactor. Decolorization rate of 75% has been reached in the batch decolorization process of RBBR with high reusability yield.

Decolorization of RBBR by PILM_laccase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83-2, 171–180.

  2. Babu, B. R., Parande, A. K., Raghu, S., & Prem, K. T. (2007). Textile Technology Cotton Textile Processing: Waste Generation and Effluent Treatment. Journal of Cotton Science, 11-3, 141–153.

  3. Moya, R., Hernández, M., García-Martín, A. B., Ball, A. S., & Arias, M. E. (2010). Contributions to a better comprehension of redox-mediated decolouration and detoxification of azo dyes by a laccase produced by Streptomyces cyaneus CECT 3335. Bioresource Technology, 101(7), 2224–2229.

  4. Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolorization. Journal of Biotechnology, 101, 49–56.

  5. Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47-12, 1723–1748.

  6. Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., & Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of Hazardous Materials, 174(1-3), 694–699.

    Article  CAS  Google Scholar 

  7. Mot, A. C., Parvu, M., Damian, G., Irimie, F. D., Darula, Z., Medzihradszky, K. F., Brema, B., & Silaghi-Dumitrescu, R. (2012). A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochemistry, 47(6), 968–975.

    Article  CAS  Google Scholar 

  8. Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30-7, 953–971.

  9. Call, H. P., & Mücke, I. (1997). Overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (lignozym®-process). Journal of Biotechnology, 53, 163–202.

  10. Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 68(2), 117–128.

    Article  CAS  Google Scholar 

  11. Galai, S., Korri-Youssoufi, H., & Marzouki, M. N. (2014). Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization. Journal of Chemical Technology and Biotechnology, 89(11), 1741–1750.

    Article  CAS  Google Scholar 

  12. Mendoza, L., Jonstrup, M., Hatti-Kaul, R., & Mattiasson, B. (2011). Azo dye decolorization by a laccase/mediator system in a membrane reactor: Enzyme and mediator reusability. Enzyme and Microbial Technology, 49(5), 478–484.

    Article  CAS  Google Scholar 

  13. Mahboubi, A., Ylitervo, P., Doyen, W., De Wever, H., & Taherzadeh, M. T. (2016). Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnology Advances, 34(5), 954–975.

    Article  CAS  Google Scholar 

  14. Galai, S., Pérez De Los Ríos, A., Hernández-Fernández, F. J., Mateo Ramírez, F., Haj Kacem, S., & Quesada-Medina, J. (2015). Application of microbial fuel cell for azoic dye decolorization with simultaneous bioenergy production using single bacterial strain. Chemical Engineering and Technology, 38(9), 1511–1518.

  15. HajKacem, S., Galai, S., Hernandez-Fernandez, F. J., de Los Rios, A. P., & Smaali, I. (2017). New Efficient Laccase Immobilization Strategy Using Ionic Liquids for Biocatalysis and Microbial Fuel Cells Applications. Journal of Chemical Technology and Biotechnology, 93(1), 174–183. https://doi.org/10.1002/jctb.5337.

    Article  Google Scholar 

  16. Ruiz, A., de los Ríos, A. P., Hernández, F. J., Janssen, M. H. A., Schoevaart, R., Van Rantwijk, F., & Sheldon, R. A. (2007). A cross-linked enzyme aggregate of Candida Antarctica lipase B is active in denaturing ionic liquid. Enzyme and Microbial Technology, 40, 1095–1099.

  17. De los Ríos, A. P., Hernández-Fernández, F. J., Gómez, D., Rubio, M., & Víllora, G. (2006). A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Applied Catalysis B: Environmental, 67, 121–126.

  18. Hernández-Fernández, F. J., de los Ríos, A. P., Lozano-Blanco, L. J., & Godínez, C. (2010). Biocatalytic ester synthesis in ionic liquid media. Journal of Chemical Technology and Biotechnology, 85, 1423–1435.

  19. Rehmann, L., Ivanova, E., Gunaratne, H. Q. N., Seddon, K. R., & Stephens, G. (2014). Enhanced laccase stability through mediator partitioning into hydrophobic ionic liquids. Green Chemistry, 16(3), 1462–1469.

    Article  CAS  Google Scholar 

  20. Sheldon, R. A. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 23, 2399–2407.

  21. Lozano, L. J., Godinez, C., de los Rios, A. P., Hernandez-Fernandez, F. J., Sanchez-Segado, S., & Alguacil, F. J. (2011). Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 376(1-2), 1–14.

  22. Tomás-Alonso, F., Rubio, A. M., Álvarez, R., & Ortuño, J. A. (2013). Dynamic potential response and SEM-EDX studies of polymeric inclusion membranes based on ionic liquids. International Journal of Electrochemical Science, 8, 4955–4969.

  23. Tavares, A. P. M., Pinho, B., Rodriguez, O., & Macedo, E. A. (2012). Biocatalysis in Ionic Liquid: Degradation of Phenol by Laccase. Procedia Engineering, 42, 226–230.

  24. Moniruzzaman, M., & Ono, T. (2013). Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresource Technology, 127, 132–137.

    Article  CAS  Google Scholar 

  25. Galai, S., Pérez De Los Rios, A., Hernández-Fernández, F. J., HajKacem, S., & Tomas Alonso, F. (2015). Over-activity and stability of laccase using ionic liquids: screening and application in dyes decolorization. RSC Advances, 5(21), 16173–16189.

  26. Galai, S., Touhami, Y., & Marzouki, M. N. (2012). Reponse surface methodology applied to laccase activities exhibited by Strenotrophomonas maltophilia AAP56 in different growth conditions. BioResources, 7(1), 706–726.

  27. Galai, S., Limam, F., & Marzouki, M. N. (2010). Decolorization of an industrial effluent by free and immobilized cells of Stenotrophomonas maltophilia AAP56. Implementation of efficient down flow column reactor. World Journal of Microbiology and Biotechnology, 26(8), 1341–1347.

    Article  CAS  Google Scholar 

  28. Hernández-Fernández, F. J., Pérez de los Ríos, A., Mateo-Ramírez, F., Godínez, C., Lozano-Blanco, L. J., Moreno, J. I., & Tomás-Alonso, F. (2015). New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chemical Engineering Journal, 279, 115–119.

  29. Fernández-Fernández, M., Ángeles-Sanromán, M., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31(8), 1808–1825.

    Article  Google Scholar 

  30. Bagewadi, Z. B., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal, Genetic Engineering & Biotechnology, 15(1), 139–150.

    Article  Google Scholar 

  31. Chao, C., Guan, H., Zhang, J., Liu, Y., Zaho, Y., & Zhang, B. (2017). Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. Water Science and Technology, 77, 809–818.

  32. Wu, X., Hou, M., & Ge, J. (2015). Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science and Technology, 5(12), 5077–5085.

    Article  CAS  Google Scholar 

  33. Zhu, L., Gong, L., Zhang, Y., Wang, R., Ge, J., Liu, Z., & Zare, R. N. (2013). Rapid detection of phenol using a membrane containing laccase nanoflowers. Aces Communications Chemistry-An Asian Journal, 8(10), 2358–2360.

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the MICINN ENE2011-25188 and SENECA Foundation 18975/JLI/2013 grants. Dr. Said Galai and PhD. Sihem Haj Kacem have postdoctoral and doctoral fellowships from Erasmus Mundus EU Mare Nostrum Program at the University of Murcia and the University of Cartagena, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Galai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

HajKacem, S., Galai, S., Hernández Fernandez, F.J. et al. Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents. Appl Biochem Biotechnol 190, 1–17 (2020). https://doi.org/10.1007/s12010-019-03085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03085-z

Keywords

Navigation