Skip to main content
Log in

Enhancing Activity by Supercritical CO2 Mediated Immobilization of Lipase on Mesocellular Foam in Preparation of Hexyl Laurate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hexyl laurate is employed in several cosmetics having great demand. It could be synthesized catalytically like a “natural” perfume using a lipase. The use of mesocellular foam silica (MCF) for immobilization of lipases could be made using supercritical CO2 as a medium to enhance its activity in comparison with the normal techniques. Three different catalysts were supported on MCF such as Candida antractica B (CALB), Amano AYS, and Porcine pancreas (PPL), and their activity was evaluated in the preparation of hexyl laurate from lauric acid and hexyl alcohol. CALB@ MCF was the best among all. A systematic study was conducted to assess the effects of different operating parameters. It was ternary complex mechanism with inhibition by hexyl alcohol. The enzyme was reusable and the process is green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Flavors & fragrances market - global forecast to 2022. https://www.prnewswire.com/news-releases/flavors%2D%2Dfragrances-market%2D%2D-global-forecast-to-2022-300614052.html

  2. Yadav, G. D., & Mehta, P. H. (1994). Preparation of phenethyl acetate and cyclohexyl acetate by using a variety of solid acidic catalysts. Industrial & Engineering Chemistry Research, 33(9), 2198–2208.

    Article  CAS  Google Scholar 

  3. Yadav, G. D., & Rahuman, M. S. M. M. (2002). Cation-exchange resin-catalysed acylations and esterifications in fine chemical and perfumery industries. Organic Process Research & Development, 6(5), 706–713.

    Article  CAS  Google Scholar 

  4. Chang, S. W., Shaw, J. F., & Shieh, C. J. (2005). Optimal lipase catalysed formation of hexyl laurate. Green Chemistry, 7(7), 547–551.

    Article  CAS  Google Scholar 

  5. Yadav, G. D., & Trivedi, A. H. (2003). Kinetic modeling of immobilized-lipase catalyzed transesterification of n-octanol with vinyl acetate in nonaqueous media. Enzyme and Microbial Technology, 32(7), 783–789.

    Article  CAS  Google Scholar 

  6. Straatho, J. A., Panke, S., & Schmid, A. (2002). The production of fine chemicals by biotransformations. Current Opinion in Biotechnology, 13(6), 548–556.

    Article  Google Scholar 

  7. Ghanem, A. (2007). Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron, 63(8), 1721–1754.

    Article  CAS  Google Scholar 

  8. Pencreach, G., Leullier, M., & Baratti, J. C. (1997). Properties of free and immobilised lipase from Pseudomonas cepacia. Biotechnology and Bioengineering, 56(2), 181–189.

    Article  CAS  Google Scholar 

  9. Yadav, G. D., & Jadhav, S. R. (2005). Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: transesterification in non-aqueous medium. Microporous & Mesoporous Materials, 86(1-3), 215–222.

    Article  CAS  Google Scholar 

  10. Sheldon, R. A., & Woodley, J. M. (2018). Role of biocatalysis in sustainable chemistry. Chemical Reviews, 118(2), 801–838.

    Article  CAS  Google Scholar 

  11. Buchholz, K., Kasche, V., & Bornscheuer, U. T. (2012). Immobilization of enzymes (including applications). In Biocatalysts and enzyme technology (2nd ed., pp. 243–253). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  12. Illanes, A. (Ed.) (2008). Heterogeneous enzyme kinetics. In Enzyme biocatalysis: principles and applications (pp. 155–203). Springer.

  13. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernandez-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society. Reviews, 42(15), 6290–6307.

    Article  CAS  Google Scholar 

  14. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  15. Fernandez-Lafuente, R., Armisen, P., Sabuquillo, P., Fernandez-Lorente, G., & Guisan, J. M. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry & Physics of Lipids, 93(1-2), 185–197.

    Article  CAS  Google Scholar 

  16. Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. In W. D. Fessner et al. (Eds.), Biocatalysis—from discovery to application. Topics in Current Chemistry, Vol 200. Berlin: Springer.

    Google Scholar 

  17. Magadum, D. B., & Yadav, G. D. (2018). Chemo-selective acetylation of 2- aminophenol using immobilized lipase: process optimization, mechanism and kinetics. ACS Omega, 3(12), 18528–18534.

  18. Li, Z., Zhang, Y., Lin, M., Ouyang, P., Ge, J., & Liu, Z. (2013). Lipase-catalyzed one-step and regioselective synthesis of clindamycin palmitate. Organic Process Research & Development, 17(9), 1179–1182.

    Article  CAS  Google Scholar 

  19. Xia, H., Zhong, X., Li, Z., & Jiang, Y. (2019). Palladium-mediated hybrid biocatalysts with enhanced enzymatic catalytic performance via allosteric effects. Journal of Colloid and Interface Science, 533, 1–8.

    Article  CAS  Google Scholar 

  20. Wu, X., Yang, C., & Ge, J. (2017). Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents. Bioresources and Bioprocessing, 4(1), 24.

    Article  Google Scholar 

  21. Wu, X., Ge, J., Yang, C., Hou, M., & Liu, Z. (2015). Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chemical Communications, 51(69), 13408–11341.

    Article  CAS  Google Scholar 

  22. Yadav, G. D., Sajgure, A. D., & Dhoot, S. B. (2007). Enzyme catalysis in fine chemical and pharmaceutical industries. In S. K. Bhattacharya (Ed.), Enzyme mixtures and complex biosynthesis. Austin: Landes Biosciences.

    Google Scholar 

  23. Yadav, G. D., & Lathi, P. S. (2004). Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. Journal of Molecular Catalysis B: Enzymatic, 27(2-3), 113–119.

    Article  CAS  Google Scholar 

  24. Yadav, G. D., & Dhoot, S. B. (2009). Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 57(1-4), 34–39.

    Article  CAS  Google Scholar 

  25. Yadav, G. D., & Devi, K. M. (2004). Immobilized lipase-catalyzed esterification and transesterification reactions in non-aqueous media for synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modelling. Chemical Engineering Science, 59(2), 373–383.

    Article  CAS  Google Scholar 

  26. Yadav, G. D., & Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 47(3), 496–502.

    Article  CAS  Google Scholar 

  27. Yadav, G. D., & Borkar, I. V. (2009). Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Industrial and Engineering Chemistry Research, 48(17), 7915–7922.

    Article  CAS  Google Scholar 

  28. Yadav, G. D., & Devendran, S. (2015). Microwave assisted enzyme catalysis: practice and perspective, Chapter 4. In M. A. Z. Coelho & B. D. Ribeiro (Eds.), White biotechnology for sustainable catalysis (pp. 52–103). London: RSC.

    Chapter  Google Scholar 

  29. Ortiz, C., Ferreira, M. L., Barbosa, O., dos Santos, J. C. S., Rodrigues, R. C., Berenguer-Murcia, A., Briand, L. E., & Fernandez-Lafuente, R. (2019). Novozym 435: the “perfect” lipase immobilized biocatalyst? Catalysis Science & Technoloy, 9, 2380–2420.

    Article  CAS  Google Scholar 

  30. Szymanska, K., Bryjak, J., Mrowiec-Białon, J., & Jarzebski, A. B. (2007). Application and properties of siliceous mesostructured cellular foams as enzyme carriers to obtain efficient biocatalysts. Microporous and Mesoporous Materials, 99(1-2), 167–175.

    Article  CAS  Google Scholar 

  31. He, J., Xu, Y., Ma, H., Zhang, Q., Evans, D. G., & Dua, X. (2006). Effect of surface hydrophobicity/ hydrophilicity of mesoporous supports on the activity of immobilised lipase. Journal of Colloid and Interface Science, 298(2), 780–786.

    Article  CAS  Google Scholar 

  32. Han, Y., Lee, S. S., & Ying, J. Y. (2006). Pressure-driven enzyme entrapment in siliceous mesocellular foam. Chemistry of Materials, 18(3), 643–649.

    Article  CAS  Google Scholar 

  33. Schmidt- Winkel, P., Lukens, W. W., Jr., Yang, P., Margolese, D. I., Lettow, J. J., Ying, J. Y., & Stucky, G. D. (2000). Microemulsion templating of siliceous mesostructured cellular foams with well defined ultralarge mesopores. Chemistry of Materials, 12(3), 686–696.

    Article  CAS  Google Scholar 

  34. Soares, C. M. F., Santos, O. A., Olivo, J. E., Castro, H. F., Moraes, F. F., & Zanin, G. M. (2004). Influence of alkyl-substituted silane precursor on sol- gel encapsulated lipase activity. Journal of Molecular Catalysis B: Enzymatic, 29(1-6), 69–79.

    Article  CAS  Google Scholar 

  35. Yadav, G. D., & Lawate, Y. S. (2011). Selective hydrogenation of styrene oxide to 2-phenyl ethanol over polyurea supported Pd-Cu catalyst in supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 78–86.

    Article  CAS  Google Scholar 

  36. More, S. R., & Yadav, G. D. (2018). Effect of supercritical CO2 as reaction medium for selective hydrogenation of acetophenone to 1-phenylethanol. ACS Omega, 3(6), 7124–7132.

    Article  CAS  Google Scholar 

  37. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., & Franken, F. M. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5(3), 197–211.

    Article  CAS  Google Scholar 

  38. Kirk, O., & Christensen, M. W. (2002). Lipases from Candida Antarctica: unique biocatalyst from a unique origin. Organic Process Research & Development, 6(4), 446–451.

    Article  CAS  Google Scholar 

  39. Chang, J. F., Shaw, S.-W., Shieh, C.-H., & Shieh, C.-J. (2006). Optimal formation of hexyl laurate by Lipozyme IM-77 in solvent-free system. Journal of Agricultural and Food Chemistry, 54(19), 7125–7129.

    Article  CAS  Google Scholar 

  40. Perry, R. H., & Green, D. W. (1984). Perry’s Chemical Engineers’ Handbook (6th ed.). New York: McGraw-Hill.

  41. Yadav, G. D., & Borkar, I. V. (2006). Kinetic modeling of microwave-assisted chemoenzymatic epoxidation of styrene. American Institute of Chemical Engineers Journal, 52(3), 1235–1247.

    Article  CAS  Google Scholar 

  42. Uppenberg, J., Ohrner, N., Norin, M., Hult, K., Kleywegt, J. G., Patkar, S., Waagen, V., Anthonsen, T., & Jones, T. A. (2004). Crystallographic and molecular-modeling studies of lipase B from C. antarctica reveal a stereospecificity pocket for secondary alcohols. Biochemistry, 34, 16838–16851.

    Article  Google Scholar 

  43. Yadav, G. D., & Devi, K. M. (2002). Enzymatic synthesis of perlauric acid using Novozym 435. Biochemical Engineering Journal, 10(2), 93–101.

    Article  CAS  Google Scholar 

  44. Yadav, G. D., & Lathi, P. S. (2006). Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions. Enzyme & Microbial Technolology, 38(6), 814–820.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GDY received support from R.T. Mody Distinguished Professor Endowment, Tata Chemicals Darbari Seth Distinguished Professor of Leadership and Innovation, and Department of Science and Technology, Govt. Of India, for the J.C. Bose National Fellowship. SV thanks the Department of Biotechnology, Govt. of India, for an award of fellowship which enabled this work to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati D. Yadav.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, G.D., Varghese, S. Enhancing Activity by Supercritical CO2 Mediated Immobilization of Lipase on Mesocellular Foam in Preparation of Hexyl Laurate. Appl Biochem Biotechnol 190, 686–702 (2020). https://doi.org/10.1007/s12010-019-03098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03098-8

Keywords

Navigation