Skip to main content
Log in

Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In order to investigate how particle aggregation affects tensile mechanical performance of composite, a ductile biopolymer (poly(caprolactone)) was melt-compounded with CaCO3 particles over a wide concentration range from 10 to 60 wt.%. The aggregation of CaCO3 particles in poly(caprolactone) (PCL) is investigated depending on particle concentration and surface modification (with stearic acid (2.5 wt.%)) based on rheological assessment. If the composite is mixed with a high concentration of particles (> 30 wt.%), morphological observations and a thermal behavior analysis do not find a difference in the particle aggregation regardless of particle surface modification. However, the linear viscoelastic moduli of the composites distinguishes the difference in particle aggregation regarding to surface modification, indicating induced aggregation behavior with surface-modified CaCO3 (sCC). The composite with sCC starts to form network structure of particles at a lower concentration (30 wt.%) than that with unmodified particles (40 wt.%). When particles form the network structure above the particle percolation threshold, the yield strength of the composite begins to decrease even though Young’s modulus is still increasing. In contrast to the expectation of the better dispersion of particles by surface modification as well as improved tensile mechanical performance with better dispersion, sCC rather induced aggregation with a lower concentration of particle than unmodified particles which resulted in decrease in yielding performance. This study showed that rheological study, especially for the composite with high concentration of particles, is useful to figure out the particle dispersion against a limit at morphology observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade, R.M.d., S.M.d. Silva Júnior, S.V.C.R. Coutinho, N.G. Jaques, H.d.V. Pina, B.G. Rodrigues, M.V.L. Fook, P.C.R. Fernandes, A. Ries, and R.M.R. Wellen, 2018, PCL/ZnO bio-friendly films as food packaging material. Thermal and morphological analysis, Materia23, e12255.

    Google Scholar 

  • Avella, M., S. Cosco, M.L. Lorenzo, E. Di Pace, M.E. Errico, and G. Gentile, 2006, Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating, Eur. Polym. J.42, 1548–1557.

    Article  CAS  Google Scholar 

  • Bari, S.S., A. Chatterjee, and S. Mishra, 2016, Biodegradable polymer nanocomposites: An overview, Polym. Rev.56, 287–328.

    Article  CAS  Google Scholar 

  • Bassam, F., P. York, R.C. Rowe, and R.J. Roberts, 1990, Young’s modulus of powders used as pharmaceutical excipients, Int. J. Pharm.64, 55–60.

    Article  CAS  Google Scholar 

  • Cioni, B. and A. Lazzeri, 2010, The role of interfacial interactions in the toughening of precipitated calcium carbonate-polypropylene nanocomposites, Compos. Interfaces17, 533–549.

    Article  CAS  Google Scholar 

  • Dang, H.C., W.C. Nie, X.L. Wang, W.T. Wang, F. Song, and Y.Z. Wang, 2014, Dandelion-like CaCO3 microspheres: Ionic liquid-assisted biomimetic synthesis and in situ fabrication of poly(ε-caprolactone)/CaCO3 composites with high performance, RSC Adv.4, 53380–53386.

    Article  CAS  Google Scholar 

  • Deshmukh, G.S., S.U. Pathak, D.R. Peshwe, and J.D. Ekhe, 2010, Effect of uncoated calcium carbonate and stearic acid coated calcium carbonate on mechanical, thermal and structural properties of poly(butylene terephthalate) (PBT)/calcium carbonate composites, Bull. Mat. Sci.33, 277–284.

    Article  CAS  Google Scholar 

  • Fu, S.Y., X.Q. Feng, B. Lauke, and Y.W. Mai, 2008, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites, Compos. Pt. B-Eng.39, 933–961.

    Article  CAS  Google Scholar 

  • Ghosal, K., A. Manakhov, L. Zajíčková, and S. Thomas, 2017, Structural and surface compatibility study of modified electro-spun poly(ε-caprolactone) (PCL) composites for skin tissue engineering, AAPS PharmSciTech18, 72–81.

    Article  CAS  Google Scholar 

  • Jeong, S.B., Y.C. Yang, Y.B. Chae, and B.G. Kim, 2009, Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system, Mater. Trans.50, 409–414.

    Article  CAS  Google Scholar 

  • Jo, J.H., E.J. Lee, D.S. Shin, H.E. Kim, H.W. Kim, Y.H. Koh, and J.H. Jang, 2009, In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(ε-caprolactone) composite materials, J. Biomed. Mater. Res. Part B91, 213–220.

    Article  CAS  Google Scholar 

  • Kai, W., Y. Hirota, L. Hua, and Y. Inoue, 2008, Thermal and mechanical properties of a poly(e-caprolactone)/graphite oxide composite, J. Appl. Polym. Sci.107, 1395–1400.

    Article  CAS  Google Scholar 

  • Kowalewski, T. and A. Galeski, 1986, Influence of chalk and its surface treatment on crystallization of filled polypropylene, J. Appl. Polym. Sci.32, 2919–2934.

    Article  CAS  Google Scholar 

  • Lam, T.D., T.V. Hoang, D.T. Quang, and J.S. Kim, 2009, Effect of nanosized and surface-modified precipitated calcium carbonate on properties of CaCO3/polypropylene nanocomposites, Mater. Sci. Eng. A-Struct. Mater.501, 87–93.

    Article  CAS  Google Scholar 

  • Lapčík, L., D. Maňas, M. Vašina, B. Lapčíková, M. Řezníček, and P. Zádrapa, 2017, High density poly(ethylene)/CaCO3 hollow spheres composites for technical applications, Compos. Pt. B-Eng.113, 218–224.

    Article  CAS  Google Scholar 

  • Lee, J.M., J.S. Hong, and K.H. Ahn, 2019, Particle percolation in a poly(lactic acid)/calcium carbonate nanocomposite with a small amount of a secondary phase and its influence on the mechanical properties, Polym. Compos.40, 4023–4032.

    Article  CAS  Google Scholar 

  • Lepoittevin, B., M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Calberg, R. Jérôme, and P. Dubois, 2002, Poly(ε-caprolactone)/clay nanocomposites prepared by melt intercalation: Mechanical, thermal and rheological properties, Polymer43, 4017–4023.

    Article  CAS  Google Scholar 

  • Li, Y., C. Han, X. Zhang, J. Bian, and L. Han, 2013, Rheology, mechanical properties, and biodegradation of poly(ε-caprolactone)/silica nanocomposites, Polym. Compos.34, 1620–1628.

    Article  CAS  Google Scholar 

  • Li, Z. and B.H. Tan, 2014, Towards the development of polycaprolactone based amphiphilic block copolymers: Molecular design, self-assembly and biomedical applications, Mater. Sci. Eng. C-Biomimetic45, 620–634.

    Article  CAS  Google Scholar 

  • Lim, H.T., K.H. Ahn, J.S. Hong, and K. Hyun, 2013, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow, J. Rheol.57, 767–789.

    Article  CAS  Google Scholar 

  • Liu, H., C. Han, and L. Dong, 2010, Preparation and characterization of poly(ε-caprolactone)/calcium carbonate nanocomposites and nanocomposite foams, Polym. Compos.31, 1653–1661.

    Article  CAS  Google Scholar 

  • Liu, X. and Q. Wu, 2002, Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites, Eur. Polym. J.38, 1383–1389.

    Article  CAS  Google Scholar 

  • Ludueña, L., A. Vázquez, and V. Alvarez, 2012, Effect of lignocellulosic filler type and content on the behavior of poly-caprolactone based eco-composites for packaging applications, Carbohydr. Polym.87, 411–421.

    Article  CAS  Google Scholar 

  • Ludueña, L.N., J.M. Kenny, A. Vázquez, and V.A. Alvarez, 2011, Effect of clay organic modifier on the final performance of PCL/clay nanocomposites, Mater. Sci. Eng. A-Struct. Mater.529, 215–223.

    Article  CAS  Google Scholar 

  • Mareri, P., S. Bastide, N. Binda, and A. Crespy, 1998, Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment, Compos. Sci. Technol.58, 747–752.

    Article  CAS  Google Scholar 

  • Neumann, R., J. Neunzehn, C. Hinueber, T. Flath, F.P. Schulze, and H.P. Wiesmann, 2019, 3D-printed poly-ε-caprolactone-CaCO3-biocompositescaffolds for hard tissue regeneration, eXPRESS Polym. Lett.13, 2–17.

    Article  CAS  Google Scholar 

  • Ock, H.G., K.H. Ahn, S.J. Lee, and K. Hyun, 2016, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology, Macromolecules49, 2832–2842.

    Article  CAS  Google Scholar 

  • Packham, D.E., 1996, Work of adhesion: Contact angles and contact mechanics, Int. J. Adhes. Adhes.16, 121–128.

    Article  CAS  Google Scholar 

  • Papirer, E., J. Schultz, and C. Turchi, 1984, Surface properties of a calcium carbonate filler treated with stearic acid, Eur. Polym. J.20, 1155–1158.

    Article  CAS  Google Scholar 

  • Rocha, M.C.G., G.F. Moreira, and A.H.M.F. Thomé da Silva, 2017, Evaluation of the effect of processing conditions on the impact properties of polypropylene-nano-CaCO3 composites, J. Compos Mater.51, 3365–3372.

    Article  CAS  Google Scholar 

  • Rybnikář, F., 1991, Interactions in the system isotactic polypropylene-calcite, J. Appl. Polym. Sci.42, 2727–2737.

    Article  Google Scholar 

  • Sadeghi, M. and A. Esfandiari, 2012, The effects of micro and nano CaCO3 on the rheological and physico/mechanical behavior of an SBS/CaCO3 composite, Mater. Tehnol.46, 695–703.

    CAS  Google Scholar 

  • Sanchez-Garcia, M.D., M.J. Ocio, E. Gimenez, and J.M. Lagaron, 2008, Novel polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications, J. Plast. Film Sheeting24, 239–251.

    Article  CAS  Google Scholar 

  • Saveleva, M.S., A.N. Ivanov, M.O. Kurtukova, V.S. Atkin, A.G. Ivanova, G.P. Lyubun, A.V. Martyukova, E.I. Cherevko, A.K. Sargsyan, A.S. Fedonnikov, I.A. Norkin, A.G. Skirtach, D.A. Gorin, and B.V. Parakhonskiy, 2018, Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications, Mater. Sci. Eng. C-Biomimetic85, 57–67.

    Article  CAS  Google Scholar 

  • Schawe, J.E.K., P.A. Vermeulen, and M. van Drongelen, 2015, A new crystallization process in polypropylene highly filled with calcium carbonate, Colloid Polym. Sci.293, 1607–1614.

    Article  CAS  Google Scholar 

  • Shang, S.W., J.W. Williams, and K.J.M. Söderholm, 1994, How the work of adhesion affects the mechanical properties of silica-filled polymer composites, J. Mater. Sci.29, 2406–2416.

    Article  CAS  Google Scholar 

  • Shin, B.Y., S.I. Lee, Y.S. Shin, S. Balakrishnan, and R. Narayan, 2004, Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone, Polym. Eng. Sci.44, 1429–1438.

    Article  CAS  Google Scholar 

  • Simões, C.L., J.C. Viana, and A.M. Cunha, 2009, Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends, J. Appl. Polym. Sci.112, 345–352.

    Article  CAS  Google Scholar 

  • Sun, Y., Y. Luo, Y. Dong, and Y. Fu, 2017, Shape memory and mechanical properties of silk fibrom/poly(ε-caprolactone) composites, Mater. Lett.193, 26–29.

    Article  CAS  Google Scholar 

  • Vermant, J., S. Cessia, M.K. Dolgovskij, P.L. Maffettone, and C.W. Macosko, 2007, Quantifying dispersion of layered nanocomposites via melt rheology, J. Rheol.51, 429–450.

    Article  CAS  Google Scholar 

  • Wang, H., M. Domingos, and F. Scenini, 2018, Advanced mechanical and thermal characterization of 3D bioextruded poly(e-caprolactone)-based composites, Rapid Prototyping J.24, 731–738.

    Google Scholar 

  • Woodruff, M.A. and D.W. Hutmacher, 2010, The return of a forgotten polymer-Polycaprolactone in the 21st century, Prog. Polym. Sci.35, 1217–1256.

    Article  CAS  Google Scholar 

  • Wu, D., D. Lin, J. Zhang, W. Zhou, M. Zhang, Y. Zhang, D. Wang, and B. Lin, 2011, Selective localization of nanofillers: Effect on morphology and crystallization of PLA/PCL blends, Macromol. Chem. Phys.212, 613–626.

    Article  CAS  Google Scholar 

  • Wutticharoenmongkol, P., N. Sanchavanakit, P. Pavasant, and P. Supaphol, 2006, Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles, Macromol. Biosci.6, 70–77.

    Article  CAS  Google Scholar 

  • Yu, H., H.W. Matthew, P.H. Wooley, and S.Y. Yang, 2008, Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites, J. Biomed. Mater. Res. Part B86, 541–547.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1E1A1A01942362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Sook Hong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Ahn, J.H., Hong, J.S. et al. Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification. Korea-Aust. Rheol. J. 32, 29–39 (2020). https://doi.org/10.1007/s13367-020-0004-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0004-7

Keywords

Navigation