Skip to main content
Log in

Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Directional water harvesting is a special ability of flora and fauna in nature. Wettability-patterned surfaces inspired by natural structures have been extensively researched and could be a great potential avenue for easing water shortage. However, preparation strategies for these nature-inspired cases, including UV irradiation with mask technology, femtosecond laser direct writing and chemical treatment, are time-consuming, cost-ineffective and environmentally unfriendly. In this paper, robust and durable superhydrophobic (SHB) glass substrate was prepared by using laser-induced backward transfer technique and fluoroalkylsilane modification. Then wedge-shaped superhydrophilic (SHL) patterns on the SHB surfaces were rapidly constructed by inexpensive and commercially available fibre laser ablation for fog harvesting. This facile, cost-effective and non-corrosive preparation method described herein could be an alternative way to construct SHL–SHB patterns on glass substrate, which could be used for microfluidic devices, droplet manipulation and cell screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li J, Li J, Sun J, Feng S, Wang Z (2019) Biological and engineered topological droplet rectifiers. Adv Mater 31:1806501

    Article  Google Scholar 

  2. Zhu M, Li Y, Chen G, Jiang F, Yang Z, Luo X, Wang Y, Lacey SD, Dai J, Wang C, Jia C, Wan J, Yao Y, Gong A, Yang B, Yu Z, Das S, Hu L (2017) Tree-Inspired design for high-efficiency water extraction. Adv Mater 29:1704107

    Article  Google Scholar 

  3. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34

    CAS  Google Scholar 

  4. Xu T, Lin Y, Zhang M, Shi W, Zheng Y (2016) High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires. ACS Nano 10:10681–10688

    Article  CAS  Google Scholar 

  5. Peng Y, He Y, Yang S, Ben S, Cao M, Li K, Liu K, Jiang L (2015) Magnetically induced fog harvesting via flexible conical arrays. Adv Funct Mater 25:5967–5971

    Article  CAS  Google Scholar 

  6. Cao M, Ju J, Li K, Dou S, Liu K, Jiang L (2014) Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv Funct Mater 24:3235–3240

    Article  CAS  Google Scholar 

  7. Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3:1247

    Article  Google Scholar 

  8. Li C, Liu Y, Gao C, Li X, Xing Y, Zheng Y (2019) Fog harvesting of a bioinspired nanocone-decorated 3D fiber network. ACS Appl Mater Inter 11:4507–4513

    Article  CAS  Google Scholar 

  9. Tian Y, Zhu P, Tang X, Zhou C, Wang J, Kong T, Xu M, Wang L (2017) Large-scale water collection of bioinspired cavity-microfibers. Nat Commun 8:1080

    Article  Google Scholar 

  10. Zheng Y, Bai H, Huang Z, Tian X, Nie F, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643

    Article  CAS  Google Scholar 

  11. Bintein PB, Lhuissier H, Mongruel A, Royon L, Beysens D (2019) Grooves accelerate dew shedding. Phys Rev Lett 122:98005

    Article  CAS  Google Scholar 

  12. Lin J, Tan X, Shi T, Tang Z, Liao G (2018) Leaf vein-inspired hierarchical wedge-shaped tracks on flexible substrate for enhanced directional water collection. ACS Appl Mater Inter 10:44815–44824

    Article  CAS  Google Scholar 

  13. Sun J, Chen C, Song J, Liu J, Yang X, Liu J, Liu X, Lu Y (2019) A universal method to create surface patterns with extreme wettability on metal substrates. J. Colloid Interf. Sci. 535:100–110

    Article  CAS  Google Scholar 

  14. Yang X, Song J, Liu J, Liu X, Jin Z (2017) A twice electrochemical-etching method to fabricate superhydrophobic–superhydrophilic patterns for biomimetic fog harvest. Sci Rep 7:8816

    Article  Google Scholar 

  15. Han S, Ji S, Abdullah A, Kim D, Lim H, Lee D (2018) Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices. Appl Surf Sci 429:244–252

    Article  CAS  Google Scholar 

  16. Song Y, Liu Y, Jiang H, Li S, Kaya C, Stegmaier T, Han Z, Ren L (2018) Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport. Nanoscale 10:3813–3822

    Article  CAS  Google Scholar 

  17. Alqurashi T, Alnufaili M, Hassan MU, Aloufi S, Yetisen AK, Butt H (2019) Laser inscription of microfluidic devices for biological assays. ACS Appl Mater Inter 11:12253–12260

    Article  CAS  Google Scholar 

  18. Nam VB, Shin J, Yoon Y, Giang TT, Kwon J, Suh YD, Yeo J, Hong S, Ko SH, Lee D (2019) Highly stable Ni-based flexible transparent conducting panels fabricated by laser digital patterning. Adv Funct Mater 29:1806895

    Article  Google Scholar 

  19. Lin Y, Han J, Cai M, Liu W, Luo X, Zhang H, Zhong M (2018) Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability. J Mater Chem A 6:9049–9056

    Article  CAS  Google Scholar 

  20. Heinz M, Srabionyan VV, Avakyan LA, Bugaev AL, Skidanenko AV, Kaptelinin SY, Ihlemann J, Meinertz J, Patzig C, Dubiel M, Bugaev LA (2018) Formation of bimetallic gold–silver nanoparticles in glass by UV laser irradiation. J Alloy Compd 767:1253–1263

    Article  CAS  Google Scholar 

  21. Kostal E, Stroj S, Kasemann S, Matylitsky V, Domke M (2018) Fabrication of biomimetic Fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers. Langmuir 34:2933–2941

    Article  CAS  Google Scholar 

  22. Rajab FH, Liu Z, Li L (2018) Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition. Appl Surf Sci 427:1135–1145

    Article  CAS  Google Scholar 

  23. Wang M, Liu Q, Zhang H, Wang C, Wang L, Xiang B, Fan Y, Guo CF, Ruan S (2017) Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection. ACS Appl Mater Inter 9:29248–29254

    Article  CAS  Google Scholar 

  24. Zywietz U, Evlyukhin AB, Reinhardt C, Chichkov BN (2014) Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat Commun 5:3402

    Article  Google Scholar 

  25. Sakata H, Chakraborty S, Wakaki M (2012) Patterning of Bi2O3 films using laser-induced forward and backward transfer techniques. Microelectron Eng 96:56–60

    Article  CAS  Google Scholar 

  26. Mir-Hosseini N, Schmidt MJJ, Li L (2005) Growth of patterned thin metal oxide films on glass substrates from metallic bulk sources using a Q-switched YAG laser. Appl Surf Sci 248:204–208

    Article  CAS  Google Scholar 

  27. Papakonstantinou P, Vainos NA, Fotakis C (1999) Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films. Appl Surf Sci 151:159–170

    Article  CAS  Google Scholar 

  28. Dhami G, Tan B, Venketakrishnan K (2011) Laser induced reverse transfer of gold thin film using femtosecond laser. Opt Laser Eng 49:866–869

    Article  Google Scholar 

  29. Kolkowitz S, Safira A, High AA, Devlin RC, Choi S, Unterreithmeier QP, Patterson D, Zibrov AS, Manucharyan VE, Park H, Lukin MD (2015) Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347:1129–1132

    Article  CAS  Google Scholar 

  30. Chen F, Liu J, Cui Y, Huang S, Song J, Sun J, Xu W, Liu X (2016) Stability of plasma treated superhydrophobic surfaces under different ambient conditions. J Colloid Interface Sci 470:221–228

    Article  CAS  Google Scholar 

  31. Ellinas K, Pujari SP, Dragatogiannis DA, Charitidis CA, Tserepi A, Zuilhof H, Gogolides E (2014) Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl Mater Inter 6:6510–6524

    Article  CAS  Google Scholar 

  32. Mahapatra PS, Ghosh A, Ganguly R, Megaridis CM (2016) Key design and operating parameters for enhancing dropwise condensation through wettability patterning. Int J Heat Mass Transfer 92:877–883

    Article  Google Scholar 

  33. Wang S, Wang C, Peng Z, Chen S (2019) Moving behavior of nanodroplets on wedge-shaped functional surfaces. J Phys Chem C 123:1798–1805

    Article  CAS  Google Scholar 

  34. Sen U, Chatterjee S, Ganguly R, Dodge R, Yu L, Megaridis CM (2018) Scaling laws in directional spreading of droplets on wettability-confined diverging tracks. Langmuir 34:1899–1907

    Article  CAS  Google Scholar 

  35. Huang S, Song J, Lu Y, Chen F, Zheng H, Yang X, Liu X, Sun J, Carmalt CJ, Parkin IP, Xu W (2016) Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns. ACS Appl Mater Inter 8:2942–2949

    Article  CAS  Google Scholar 

  36. Song J, Liu Z, Wang X, Liu H, Lu Y, Deng X, Carmalt CJ, Parkin IP (2019) High-efficiency bubble transportation in an aqueous environment on a serial wedge-shaped wettability pattern. J Mater Chem A 7:13567–13576

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 51305060) and National Basic Research Program of China (Grant No. 2015CB057304). F. Chen acknowledges the support from National Postdoctoral Program for Innovative Talents (No. BX20190233). I. P. Parkin acknowledges the support from EPSRC grant of Industrial Doctorate Centre: Molecular Modelling & Materials Science (EP/G036675/1). Yao Lu acknowledges the financial support from the QMUL-SBCS start-up.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Liu or Xiaolong Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, F., Lu, Y. et al. Superhydrophilic–superhydrophobic patterned surfaces on glass substrate for water harvesting. J Mater Sci 55, 498–508 (2020). https://doi.org/10.1007/s10853-019-04046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04046-x

Navigation