Skip to main content
Log in

Influence of Topology and Chemical Composition of MTT and MFI Zeolites on Catalytic Properties in the Isomerization Reaction of Ethylene Oxide to Acetaldehyde

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

It has been shown by the example of zeolites with the MTT (Al-ZSM-23 and Fe-ZSM-23) and MFI (Al-ZSM-5 and Fe-ZSM-5) structures that mesoporous zeolites are efficient catalysts for the gas-phase isomerization of ethylene oxide to acetaldehyde. At 300–400°C and complete conversion of ethylene oxide, the selectivity of its conversion to acetaldehyde (SAA) reaches at least 90%. The key factors determining the selectivity and stability of the catalyst are the topology of the zeolite and its acid properties. Unidimensional zeolites with the MTT structure demonstrate higher SAA in comparison with the samples with the three-dimensional MFI structure. Decreasing the strength of Brønsted acid sites by replacing Al by Fe in the zeolites of both structural types also leads to a growth in SAA. The samples are arranged in following order of decreasing SAA: Fe-ZSM-23 > Fe-ZSM-5 = ZSM-23 > ZSM-5. The main byproduct of the reaction is crotonic aldehyde, the formation of which is promoted by strong Brønsted acid sites. The crotonic aldehyde selectivity over aluminosilicate samples is above 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Kubu, R. Millini, and N. Zilkova, Catal. Today, 324, 3 (2019).

    Article  CAS  Google Scholar 

  2. H. Konno, R. Ohnaka, J. Nishimura, T. Tago, Y. Nakasaka, T. Masuda, Catal. Sci. Technol. 4, 4265 (2014).

    Article  CAS  Google Scholar 

  3. D. N. Gerasimov, V. V. Fadeev, A. N. Loginova, and S. V. Lysenko, Catal. Ind. 7, 198 (2015).

    Article  Google Scholar 

  4. I. E. Maxwell, J. K. Minderhoud, W. H. J. Stork, and J. A. R. Veen, Handbook of Heterogeneous Catalysis, Ed. by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp (Wiley–VCH, Weinheim, 2008), 2nd Ed., p. 3153.

    Google Scholar 

  5. C. Baerlocher, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types, 6 Ed. (Elsevier, Amsterdam, 2007). http://www.iza-structure.org/databases.

    Google Scholar 

  6. A. Rohrman, R. LaPierre, J. Schlenker, et al., Appl. Spectrosc. 5, 351 (1985).

    Google Scholar 

  7. A. Corma, F. J. Llopis, C. Martinez, et al., J. Catal. 268, 9 (2009).

    Article  CAS  Google Scholar 

  8. R. Kumar and P. Ratnasamy, J. Catal. 116, 440 (1989).

    Article  CAS  Google Scholar 

  9. C. L. Oyoung, R. J. Pellet, D. G. Casey, et al., J. Catal. 151, 467 (1995).

    Article  CAS  Google Scholar 

  10. M. Kubu, N. Zilkova, S. I. Zones, et al., Catal. Today 259, 9 (2015).

    Google Scholar 

  11. C. Li and Z. Wu, Handbook of Zeolite Science and Technology, Ed. by S. M. Auerbach, K. A. Carrado, and P. K. Dutta (Marcel Dekker, New York, 2003), p. 445.

    Google Scholar 

  12. F. Wakabayashi, J. N. Kondo, K. Domen, and C. Hirose, J. Phys. Chem. 99, 10 573 (1995).

    Article  Google Scholar 

  13. P. V. Zimakov, O. N. Dyment, and N. A. Bogoslovskii, Ethylene Oxide (Khimiya, Moscow, 1967), p. 57 [in Russian].

    Google Scholar 

  14. J. P. Dever, K. F. George, W. C. Hoffman, and H. Soo, Ethylene Oxide, in Kirk–Othmer Encyclopedia of Chemical Technology, 5th Ed. (Wiley, New York, 2000), vol. 10, p. 639.

    Google Scholar 

  15. A. S. Kharitonov, V. S. Chernyavskii, L. V. Piryutko, et al., RU Patent No. 2600452 (2016).

  16. S. Ernst, R. Kumar, and J. Weitkamp, ACS Symposium Series, vol. 398: Zeolite Synthesis, Ed. by M. L. Occelli and H. E. Robson, (The American Chemical Society, Washington, DC, 1989), p. 560.

  17. R. Kumar and P. Ratnasamy, J. Catal. 121, 89 (1990).

    Article  CAS  Google Scholar 

  18. N. V. N. Romannikov, V. M. Mastikhin, S. Hočevar, and B. Držaj, Zeolites, No 3, 311 (1983).

    Article  CAS  Google Scholar 

  19. K. Möller and T. Bein, Microporous Mesoporous Mater. 143, 253 (2011).

    Article  CAS  Google Scholar 

  20. J. Pérez-Ramírez, Verboekend, A. Bonilla, and S. Abelló, Adv. Funct. Mater. 19, 3972 (2009).

    Article  CAS  Google Scholar 

  21. D. N. Gerasimov, Candidate’s Dissertation in Chemistry (Moscow, 2014).

  22. O. O. Bernardini and E. A. Cherniak, Can. J. Chem. 51, 1371 (1973).

    Article  CAS  Google Scholar 

  23. R. E. Kenson and M. Lapkin, J. Phys. Chem. 74, 1493 (1970).

    Article  CAS  Google Scholar 

  24. A. Nielsen and W. Houlihan, Org. React., 16, 1 (1968).

    Google Scholar 

  25. Yu. K. Yur’ev and K. Yu. Novitskii, Dokl. Akad. Nauk SSSR, 63, 285 (1948).

    Google Scholar 

  26. L. F. Fieser and M. Fieser, Reagents for Organic Synthesis (Wiley–Interscience, New York, 1972), Vol. 3.

    Google Scholar 

  27. E. T. C. Vogt, G. T. Whiting, A. D. Chowdhury, and B. M. Weckhuysen, Adv. Catal. 58, 157 (2015).

    Google Scholar 

Download references

Funding

This work was performed within the framework of the state task to the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Lazareva.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piryutko, L.V., Lazareva, S.V., Chernyavskii, V.S. et al. Influence of Topology and Chemical Composition of MTT and MFI Zeolites on Catalytic Properties in the Isomerization Reaction of Ethylene Oxide to Acetaldehyde. Pet. Chem. 59, 726–732 (2019). https://doi.org/10.1134/S0965544119070144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119070144

Keywords:

Navigation