Skip to main content
Log in

Biodiesel Production from Acidic Oils Using Polyoxometalate-Based Sulfonated Ionic Liquids Functionalized Metal–Organic Frameworks

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

An efficient and recyclable catalyst, namely phosphomolybdenum-based sulfonated ionic liquids (ILs) functionalized MIL-100(Fe) metal–organic framework (AIL/HPMo/MIL-100(Fe)), was developed for the production of biodiesel via the transesterification-esterifications of acidic oils. For this goal, the MIL-100(Fe) metal–organic framework (MOF) was initially modified with phosphomolybdic acid (HPMo), and then the acidic ionic liquid (AIL) was immobilized on the prepared HPMo/MIL-100(Fe) composite through ion-exchange of 1-(propyl-3-sulfonate)imidazolium hydrogen sulfate with HPMo. The as-developed AIL/HPMo/MIL-100(Fe) catalyst possessed enhanced surface acidities, endowing the merits of Lewis and Brönsted acids with a heterogeneous microreactor of MOFs and favoring the better catalytic performance. The characterization results corroborated that the polyoxometalate-based ILs were incorporated into the MIL-100(Fe), and the porous structure of the MIL-100(Fe) maintained nearly unchangeable after the synthesis processes. The AIL/HPMo/MIL-100(Fe) catalyst could perform simultaneous transesterification of soybean oil and esterification of free fatty acids (FFAs) with long-term catalytic durability. The conversion of acidic oils using this solid catalyst gave 92.3% oil conversion for the transesterification of soybean oil and full FFA conversion for the esterification of FFAs with the methanol/oil molar ratio of 30:1 at 120 °C, showing potential applications for the production of biodiesel particularly from acidic oil feedstocks.

Graphical Abstract

Synopsis: Phosphomolybdenum-based sulfonated ionic liquids (ILs) functionalized MIL-100(Fe) metal–organic framework composites are fabricated and then utilized as efficient and recyclable catalysts for the production of biodiesel via one-pot transesterification-esterifications of acidic oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhuomoregbe DIO (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297. https://doi.org/10.1016/j.biombioe.2013.11.014

    Article  CAS  Google Scholar 

  2. Xie W, Huang M (2018) Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: characterization and application for biodiesel production. Energy Convers Manag 159:42–53. https://doi.org/10.1016/j.enconman.2018.01.021

    Article  CAS  Google Scholar 

  3. Feyzi M, Hassankhani A, Rafiee HR (2013) Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production. Energy Convers Manag 71:62–68. https://doi.org/10.1016/j.enconman.2013.03.022

    Article  CAS  Google Scholar 

  4. Gebremariam SN, Marchetti JM (2018) Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Convers Manag 171:1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105

    Article  CAS  Google Scholar 

  5. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energy Rev 90:356–369. https://doi.org/10.1016/j.rser.2018.03.069

    Article  CAS  Google Scholar 

  6. Dhawane SH, Kumar T, Halder G (2018) Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Convers Manag 167:176–202. https://doi.org/10.1016/j.enconman.2018.04.073

    Article  CAS  Google Scholar 

  7. Mansir N, Taufiq-Yap YH, Rashid U, Lokman IM (2017) Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: a review. Energy Convers Manag 141:171–182. https://doi.org/10.1016/j.enconman.2016.07.037

    Article  CAS  Google Scholar 

  8. Lien YS, Hsieh LS, Wu JC (2010) Biodiesel synthesis by simultaneous esterification and transesterification using oleophilic acid catalyst. Ind Eng Chem Res 49:2118–2121. https://doi.org/10.1021/ie901496h

    Article  CAS  Google Scholar 

  9. D’Souza R, Vats T, Chattree A, Siril PF (2018) Graphene supported magnetically separable solid acid catalyst for the single step conversion of waste cooking oil to biodiesel. Renew Energy 126:1064–1073. https://doi.org/10.1016/j.renene.2018.04.035

    Article  CAS  Google Scholar 

  10. Alcañiz-Monge J, El Bakkali B, Trautwein G, Reinoso S (2018) Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production. Appl Catal B 224:194–203. https://doi.org/10.1016/j.apcatb.2017.10.066

    Article  CAS  Google Scholar 

  11. Chaveanghong S, Smith SM, Smith CB, Luengnaruemitchai A, Boonyuen S (2018) Simultaneous transesterification and esterification of acidic oil feedstocks catalyzed by heterogeneous tungsten loaded bovine bone under mild conditions. Renew Energy 126:156–162. https://doi.org/10.1016/j.renene.2018.03.036

    Article  CAS  Google Scholar 

  12. Li Y, Zhang XD, Sun L, Xu M, Zhou WG, Liang XH (2010) Solid superacid catalyzed fatty acid methyl esters production from acid oil. Appl Energy 87:2369–2373. https://doi.org/10.1016/j.apenergy.2010.01.017

    Article  CAS  Google Scholar 

  13. Sandouqa A, Al-Hamamre Z, Asfar J (2019) Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew Energy 132:667–682. https://doi.org/10.1016/j.renene.2018.08.029

    Article  CAS  Google Scholar 

  14. Huang M, Luo J, Fang Z, Li H (2016) Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub-and super-critical ethanol. Appl Catal B 190:103–114. https://doi.org/10.1016/j.apcatb.2016.02.069

    Article  CAS  Google Scholar 

  15. Rattanaphra D, Harvey AP, Thanapimmetha A, Srinophakun P (2012) Simultaneous transesterification and esterification for biodiesel production with and without a sulphated zirconia catalyst. Fuel 97:467–475. https://doi.org/10.1016/j.fuel.2012.01.031

    Article  CAS  Google Scholar 

  16. Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J (2010) Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbonbased solid acid catalyst. Appl Energy 87:2589–2596. https://doi.org/10.1016/j.apenergy.2010.03.024

    Article  CAS  Google Scholar 

  17. da Conceição LRV, Carneiro LM, Rivaldi JD, de Castro HF (2016) Solid acid as catalyst for biodiesel production via simultaneous esterification and transesterification of macaw palm oil. Ind Crop Prod 89:416–424. https://doi.org/10.1016/j.indcrop.2016.05.044

    Article  CAS  Google Scholar 

  18. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev 44:6804–6849. https://doi.org/10.1039/c4cs00395k

    Article  CAS  PubMed  Google Scholar 

  19. Huang YB, Liang J, Wang XS, Cao R (2017) Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157. https://doi.org/10.1039/c6cs00250a

    Article  CAS  PubMed  Google Scholar 

  20. Cohen SM (2012) Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev 112:970–1000. https://doi.org/10.1021/cr200179u

    Article  CAS  PubMed  Google Scholar 

  21. Abednatanzi S, Abbasi A, Masteri-Farahani M (2017) Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100 (Fe): a recyclable catalyst for selective oxidation of benzyl alcohol. Catal Commun 96:6–10. https://doi.org/10.1016/j.catcom.2017.03.011

    Article  CAS  Google Scholar 

  22. Rafiee E, Eavani S (2017) Polyoxometalates as heterogeneous catalysts for organic reactions. Curr Org Chem 21:752–778. https://doi.org/10.2174/1385272821666170126162936

    Article  CAS  Google Scholar 

  23. Rafiee E, Eavani S (2016) Heterogenization of heteropoly compounds: a review of their structure and synthesis. RSC Adv 6:46433–46466. https://doi.org/10.1039/c6ra04891a

    Article  CAS  Google Scholar 

  24. Zhang F, Jin Y, Shi J, Zhong Y, Zhu W, El-Shall MS (2015) Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244. https://doi.org/10.1016/j.cej.2015.01.092

    Article  CAS  Google Scholar 

  25. Granadeiro CM, Barbosa AD, Silva P, Paz FAA, Saini VK, Pires J et al (2013) Monovacant polyoxometalates incorporated into MIL-101(Cr): novel heterogeneous catalysts for liquid phase oxidation. Appl Catal A 453:316–326. https://doi.org/10.1016/j.apcata.2012.12.039

    Article  CAS  Google Scholar 

  26. Hoo PY, Abdullah AZ (2014) Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chem Eng J 250:274–287. https://doi.org/10.1016/j.cej.2014.04.016

    Article  CAS  Google Scholar 

  27. Ullah Z, Khan AS, Muhammad N, Ullah R, Alqahtani AS, Shah SN et al (2018) A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel. J Mol Liq 266:673–686. https://doi.org/10.1016/j.molliq.2018.06.024

    Article  CAS  Google Scholar 

  28. Li J, Guo Z (2017) Structure evolution of synthetic amino acids-derived basic ionic liquids for catalytic production of biodiesel. ACS Sustain Chem Eng 5:1237–1247. https://doi.org/10.1021/acssuschemeng.6b02732

    Article  CAS  Google Scholar 

  29. Kraus GA, Guney T (2012) A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids. Green Chem 14:1593–1596. https://doi.org/10.1039/c2gc35175g

    Article  CAS  Google Scholar 

  30. Yuan C, Huang Z, Chen J (2012) Basic ionic liquid supported on mesoporous SBA-15: an efficient heterogeneous catalyst for epoxidation of olefins with H2O2 as oxidant. Catal Commun 24:56–60. https://doi.org/10.1016/j.catcom.2012.03.003

    Article  CAS  Google Scholar 

  31. Cheng W, Chen X, Sun J, Wang J, Zhang S (2013) SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal Today 200:117–124. https://doi.org/10.1016/j.cattod.2012.10.001

    Article  CAS  Google Scholar 

  32. Xie W, Wan F (2018) Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel 220:248–256. https://doi.org/10.1016/j.fuel.2018.02.014

    Article  CAS  Google Scholar 

  33. Luo QX, An BW, Ji M, Park SE, Hao C, Li YQ (2015) Metal-organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent. J Porous Mat 22:247–259. https://doi.org/10.1007/s10934-014-9891-7

    Article  CAS  Google Scholar 

  34. Huang W, Zhu W, Li H, Shi H, Zhu G, Liu H et al (2010) Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids. Ind Eng Chem Res 49:8998–9003. https://doi.org/10.1021/ie100234d

    Article  CAS  Google Scholar 

  35. Rafiee E, Eavani S (2014) A new organic–inorganic hybrid ionic liquid polyoxometalate for biodiesel production. J Mol Liq 199:96–101. https://doi.org/10.1016/j.molliq.2014.08.034

    Article  CAS  Google Scholar 

  36. Wu J, Gao Y, Zhang W, Tan Y, Tang A, Men Y et al (2015) Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal–organic framework as catalyst. Appl Organomet Chem 29:96–100. https://doi.org/10.1002/aoc.3251

    Article  CAS  Google Scholar 

  37. Nobakht N, Faramarzi MA, Shafiee A, Khoobi M, Rafiee E (2018) Polyoxometalate-metal organic framework-lipase: an efficient green catalyst for synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Int J Biol Macromol 113:8–19. https://doi.org/10.1016/j.ijbiomac.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  38. Wu Z, Li Z, Wu G, Wang L, Lu S, Wang L et al (2014) Brønsted acidic ionic liquid modified magnetic nanoparticle: an efficient and green catalyst for biodiesel production. Ind Eng Chem Res 53:3040–3046. https://doi.org/10.1021/ie4040016

    Article  CAS  Google Scholar 

  39. Amoozadeh A, Rahmani S (2015) Nano-WO3-supported sulfonic acid: new, efficient and high reusable heterogeneous nano catalyst. J Mol Catal A 396:96–107. https://doi.org/10.1016/j.molcata.2014.09.020

    Article  CAS  Google Scholar 

  40. Standards, B. Fat and oil derivatives. Fatty acid methyl esters (FAME). Determination of ester and linolenic acid methyl ester contents, Standards Policy and Strategy Committee, British Standards Institute,2003

  41. Zhao J, Anjali J, Yan Y, Lee JM (2017) Cr-MIL-101-encapsulated Keggin phosphomolybdic acid as a catalyst for the one-pot synthesis of 2,5-diformylfuran from fructose. ChemCatChem 9:1187–1191. https://doi.org/10.1002/cctc.201601546

    Article  CAS  Google Scholar 

  42. Karimi Z, Mahjoub AR, Aghdam FD (2009) SBA immobilized phosphomolybdic acid: efficient hybrid mesostructured heterogeneous catalysts. Inorg Chim Acta 362:3725–3730. https://doi.org/10.1016/j.ica.2009.04.029

    Article  CAS  Google Scholar 

  43. Han M, Gu Z, Chen C, Wu Z, Que Y, Wang Q et al (2016) Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Adv 6:37110–37117. https://doi.org/10.1039/c6ra00579a

    Article  CAS  Google Scholar 

  44. Gopinath S, Kumar PV, Kumar PSM, Arafath KY, Sivanesan S, Baskaralingam P (2018) Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and transesterification of non-edible oils for green diesel production. Fuel 234:824–835. https://doi.org/10.1016/j.fuel.2018.07.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21776062) and the Key Scientific Projects of Universities in Henan Province of China (Grant No. 19zx002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlei Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Wan, F. Biodiesel Production from Acidic Oils Using Polyoxometalate-Based Sulfonated Ionic Liquids Functionalized Metal–Organic Frameworks. Catal Lett 149, 2916–2929 (2019). https://doi.org/10.1007/s10562-019-02800-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02800-z

Keywords

Navigation