Skip to main content
Log in

Extracellular Expression of L-Aspartate-α-Decarboxylase from Bacillus tequilensis and Its Application in the Biosynthesis of β-Alanine

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

L-aspartate-α-decarboxylase was extracellularly expressed to enhance its production for β-alanine biosynthesis. L-aspartate-α-decarboxylase and cutinase were coexpressed in Escherichia coli; more than 40% of the L-aspartate-α-decarboxylase was secreted into the medium. Selection of best conditions among tested variables enhanced L-aspartate-α-decarboxylase production by the recombinant strain. The total L-aspartate-α-decarboxylase activity reached 20.3 U/mL. Analysis of the enzymatic properties showed that the optimum temperature and pH for L-aspartate-α-decarboxylase were 60 °C and 7.5, respectively. Enzyme activity was stable at pH 4.0–8.5 and displayed sufficient thermal stability at temperatures < 50 °C. In addition, enzymatic synthesis of β-alanine was performed using extracellularly expressed L-aspartate-α-decarboxylase, and a mole conversion rate of > 99% was reached with a substrate concentration of 1.5 M. Extracellular expression of L-aspartate-α-decarboxylase resulted in increased enzyme production, indicating its possible application in the enzymatic synthesis of β-alanine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Könst, P. M., Franssen, M. C. R., Scott, E. L., & Sanders, J. P. M. (2009). A study on the applicability of L-aspartate alpha-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chemistry, 11(10), 1646–1652.

    Article  CAS  Google Scholar 

  2. Song, C. W., Lee, J., Ko, Y. S., & Lee, S. Y. (2015). Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering, 30(3), 121–129.

    Article  CAS  PubMed  Google Scholar 

  3. Ford, J. H. (2002). The alkaline hydrolysis of β-aminopropionitrile. Journal of the American Chemical Society, 67(5), 876–877.

    Article  Google Scholar 

  4. Shen, Y., Zhao, L., Li, Y., Zhang, L., & Shi, G. (2014). Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnology Letters, 36(8), 1681–1686.

    Article  CAS  PubMed  Google Scholar 

  5. Williamson, J. M., & Brown, G. M. (1979). Purification and properties of L-aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. Journal of Biological Chemistry, 254(16), 8074–8082.

    CAS  PubMed  Google Scholar 

  6. Gopalan, G., Chopra, S., Ranganathan, A., & Swaminathan, K. (2010). Crystal structure of uncleaved L-aspartate-alpha-decarboxylase from Mycobacterium tuberculosis. Proteins-Structure Function and Genetics, 65(4), 796–802.

    Article  CAS  Google Scholar 

  7. Dusch, N., Pühler, A., & Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Applied and Environmental Microbiology, 65(4), 1530–1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pei, W., Zhang, J., Deng, S., Tigu, F., Li, Y., & Li, Q. (2017). Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Applied Microbiology and Biotechnology, 101(15), 6015–6021.

    Article  CAS  PubMed  Google Scholar 

  9. Mahalik, S., Sharma, A. K., & Mukherjee, K. J. (2014). Genome engineering for improved recombinant protein expression in Escherichia coli. Microbial Cell Factories, 13(1), 177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, H., Lu, X., Chen, K., Yang, J., Zhang, A., Wang, X., & Ouyang, P. (2018). β-Alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis, 449, 93–98.

    Article  CAS  Google Scholar 

  11. Khushoo, A., Pal, Y., Singh, B. N., & Mukherjee, K. J. (2004). Extracellular expression and single step purification of recombinant escherichia coli L-asparaginase II. Protein Expression & Purification, 38(1), 29–36.

    Article  CAS  Google Scholar 

  12. Su, L., Yue, M., & Jing, W. (2015). Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of l -citrulline. Bioresource Technology, 196, 176–183.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, J., Wu, D., Chen, S., Chen, J., & Wu, J. (2011). High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). Journal of Agricultural & Food Chemistry, 59(8), 3797–3802.

    Article  CAS  Google Scholar 

  14. Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology & Biotechnology, 64(5), 625–635.

    Article  CAS  Google Scholar 

  15. Mergulhão, F. J., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23(3), 177–202.

    Article  CAS  PubMed  Google Scholar 

  16. Su, L., Woodard, R. W., Chen, J., & Wu, J. (2013). Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Applied and Environmental Microbiology, 79(14), 4192–4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng, Z., Zhang, J., Chen, G., Cha, Y., Liu, J., Ge, Y., Cheng, S., & Yu, B. (2016). Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α- decarboxylase. Acta Microbiologica Sinica, 56(1), 44–55.

    PubMed  Google Scholar 

  18. Song, C. W., Kim, D. I., Choi, S., Jang, J. W., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology and Bioengineering, 110(7), 2025–2034.

    Article  CAS  PubMed  Google Scholar 

  19. Bartolomeo, M. P., & Maisano, F. (2006). Validation of a reversed-phase HPLC method for quantitative amino acid analysis. Journal of Biomolecular Techniques Jbt, 17(17), 131–137.

    PubMed  PubMed Central  Google Scholar 

  20. Zhu, H. Y., & Li, Q. (2006). Strategies for expression of soluble heterologous proteins in Escherichia coli. Chinese Journal of Process Engineering, 6(1), 150–155.

    CAS  Google Scholar 

  21. Makino, T., Georgiou, G., & Skretas, G. (2011). Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 10(1), 32–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Terasawa, M., Inui, M., Uchida, Y., Kobayashi, M., Kurusu, Y., & Yukawa, H. (1991). Application of the tryptophanase promoter to high expression of the tryptophan synthase gene in Escherichia coli. Applied Microbiology & Biotechnology, 34(5), 623–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhibin Feng or Juan Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zhang, J., Chen, G. et al. Extracellular Expression of L-Aspartate-α-Decarboxylase from Bacillus tequilensis and Its Application in the Biosynthesis of β-Alanine. Appl Biochem Biotechnol 189, 273–283 (2019). https://doi.org/10.1007/s12010-019-03013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03013-1

Keywords

Navigation