Skip to main content
Log in

Inhibitory Effects of Vanadium-Binding Proteins Purified from the Sea Squirt Halocynthia roretzi on Adipogenesis in 3T3-L1 Adipocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The inhibitory effects of vanadium-binding proteins (VBPs) from the blood plasma and the intestine of sea squirt on adipogenesis in 3T3-L1 adipocytes were examined. 3T3L-1 cells treated with VBP blood plasma decreased markedly the lipid content in maturing pre-adipocytes in a dose-dependent manner, whereas VBP intestine did not show significant effects on lipid accumulation. Both VBPs did not have significant effect on cell viability. In order to demonstrate the anti-adipogenic effects of VBP blood plasma, the expressions of several adipogenic transcription factors and enzymes were investigated by Reverse Transcriptase-Polymerase Chain Reaction. VBP blood plasma down-regulated the expressions of transcription factors; PPAR-γ, C/EBP-α, SREBP1, and FAS, but did not have significant effects on the expressions of lipolytic enzymes; HSL and LPL. Both the crude and purified VBPs significantly increased the mRNA levels of Wnt10b, FZ1, LRP6, and β-catenin, while decreased the expression of GSK-3β. Hence, VBP blood plasma inhibited adipogenesis by activating WNT/β-catenin pathway via the activation of Wnt10b. Based on the findings, VBP blood plasma decreased lipid accumulation which was mediated by decreasing adipogenesis, not by lipolysis. Therefore, VBP blood plasma could be used to treat obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siersbæk, R., Nielsen, R., & Mandrup, S. (2012). Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends in Endocrinology and Metabolism, 23(2), 56–64.

    Article  Google Scholar 

  2. Rosen, E. D., & Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444(7121), 847–853.

    Article  CAS  Google Scholar 

  3. Bae, K. H., Kim, W. K., & Lee, S. C. (2012). Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets? BMB Reports, 45(12), 700–706.

    Article  CAS  Google Scholar 

  4. Farmer, S. R. (2008). Molecular determinants of brown adipocyte formation and function. Genes & Development, 22(10), 1269–1275.

    Article  CAS  Google Scholar 

  5. Bouzid, T., Hamel, F. G., & Lim, J. Y. (2016). Journal of Diabetes Research, 5, 75–85.

    Google Scholar 

  6. Lefterova, E. D., & Lazar, M. A. (2009). New developments in adipogenesis. Trends in Endocrinology and Metabolism, 20(3), 107–114.

    Article  CAS  Google Scholar 

  7. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding Adipocyte Differentiation. Physiological Reviews, 78(3), 783–809.

    Article  CAS  Google Scholar 

  8. Rosen, E. D., Hsu, C. H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F. J., & Spiegelman, B. M. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes & Development, 16(1), 22–26.

    Article  CAS  Google Scholar 

  9. Kim, J. B., Wright, H. M., Wright, M., & Spiegelman, B. M. (1998). ADD1/SREBP1 activates PPAR through the production of endogenous ligand. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4333–4337.

    Article  CAS  Google Scholar 

  10. Wu, Z., Rosen, E. D., Brun, R., Hauser, S., Adelmant, G., Troy, A. E., AcKeon, C., Darlington, G., & Spiegelmsn, B. M. (1999). Molecular Cell, 3(2), 151–158.

    Article  CAS  Google Scholar 

  11. Kim, J. B., Wright, H. M., Wright, M., & Spiegelman, B. M. (1998). Genes & Development, 10, 1096–1007.

    Article  Google Scholar 

  12. Yokoyama, C., Spiegelmsn, B. M., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., Goldstein, J. L., & Brown, M. S. (1993). SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 75(1), 187–197.

    Article  CAS  Google Scholar 

  13. Pessoa, J. C., Garribba, E., Santos, M. F. A., & Santos-Silva, T. (2015). Coordination Chemistry Reviews, 301(302), 49–86.

    Article  Google Scholar 

  14. Yoshihara, M., Ueki, T., Yamaguchi, N., Kaminom, K., & Michibata, H. (2008). Biochimica et Biophysica Acta, 1780, 56–63.

    Google Scholar 

  15. Yoshinaga, M., Ueki, T., & Michibata, H. (2007). Metal binding ability of glutathione transferases conserved between two animal species, the vanadium-rich ascidian Ascidia sydneiensis samea and the schistosome Schistosoma japonicum. Biochimica et Biophysica Acta, 1770(9), 1413–1418.

    Article  CAS  Google Scholar 

  16. Ueki, T., Adachi, T., Kawano, S., Aoshima, M., & Yamaguchi, N. (2003). Vanadium-binding proteins (vanabins) from a vanadium-rich ascidian Ascidia sydneiensis samea. Biochimica et Biophysica Acta, 1626(1–3), 43–50.

    Article  CAS  Google Scholar 

  17. McNeill, J. H., Yeun, V. G., Dai, S., & Orvig, C. (1995). Increased potency of vanadium using organic ligands. Molecular and Cellular Biochemistry, 153(1-2), 175–180.

    Article  CAS  Google Scholar 

  18. Srivastava, A. K. (1999). Molecular and Cell Biology, 206, 177–182.

    Google Scholar 

  19. Liu, Y., Xu, H., Xu, J., Guo, Y., Xue, Y., Wang, J., & Xue, C. (2015). Vanadium-binding protein from vanadium-enriched sea cucumber Apostichopus japonicus inhibits adipocyte differentiation through activating WNT/β-catenin pathway. Journal of Functional Foods, 17, 504–513.

    Article  Google Scholar 

  20. Ueki, T., & Michibata, H. (2011). Molecular mechanism of the transport and reduction pathway of vanadium in ascidians. Coordination Chemistry Reviews, 255(19-20), 2249–2257.

    Article  CAS  Google Scholar 

  21. Gunasinghe, M. A., & Kim, S. M. (2018). Antioxidant and antidiabetic activities of vanadium binding proteins purified from the sea squirt Halocynthia roretzi. Journal of Food Science and Technology, 55(5), 1840–1849.

    Article  CAS  Google Scholar 

  22. Kruger, N. J. (1994). In methods in molecular biology. In J. M. Walker (Ed.), The Bradford method for protein quantitation (Vol. 32, pp. 9–15). Totowa: Humana.

    Google Scholar 

  23. Laemmli, U. K., & Favre, M. (1973). Maturation of the head of bacteriophage T4. Journal of Molecular Biology, 80(4), 575–592.

    Article  CAS  Google Scholar 

  24. Feng, Z., Yu, H. N., Cui, X. M., Wang, Z. C., Shen, S. R., & Das, U. N. (2014). Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition, 30(3), 319–325.

    Article  CAS  Google Scholar 

  25. Cortizo, A. M., Bruzzone, L., Molinuevo, S., & Etcheverry, S. B. (2000). A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology, 147(2), 89–99.

    Article  CAS  Google Scholar 

  26. Crans, D. C., Smee, J. J., Gaidamauskas, E., & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chemical Reviews, 104(2), 849–902.

    Article  CAS  Google Scholar 

  27. Nechay, B. R. (1984). Mechanisms of action of vanadium. Annual Review of Pharmacology and Toxicology, 24(1), 501–524.

    Article  CAS  Google Scholar 

  28. Peters, K. G., Davis, M. G., Howard, B. W., Pokross, M., Rastogi, V., Diven, C., Greis, K. D., Eby-Wilkens, E., Maier, M., Evdokimov, A., Soper, S., & Genbauffe, F. (2003). Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. Journal of Inorganic Biochemistry, 96(2-3), 321–330.

    Article  CAS  Google Scholar 

  29. Green, H., & Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell, 5(1), 19–27.

    Article  CAS  Google Scholar 

  30. Yeh, W. C., Cao, Z., Classon, M., & McKnight, S. L. (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes & Development, 9(2), 168–181.

    Article  CAS  Google Scholar 

  31. Summers, S. A., Yin, V. P., Whiteman, E. L., Garza, L. A., Cho, H., Tuttle, R. L., & Birnbaum, M. J. (1999). Annals of the New York Academy of Sciences, 892, 169–186.

    Article  CAS  Google Scholar 

  32. Farmer, S. R. (2006). Transcriptional control of adipocyte formation. Cell Metabolism, 4(4), 263–273.

    Article  CAS  Google Scholar 

  33. Tong, Q., & Hotamisligil, G. S. (2001). Molecular mechanisms of adipocyte differentiation. Reviews in Endocrine & Metabolic Disorders, 2(4), 349–355.

    Article  CAS  Google Scholar 

  34. Zechner, R1., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, A., & Madeo, F. (2012). FAT SIGNALS - lipases and lipolysis in lipid metabolism and signaling. Cell Metabolism, 15(3), 279–291.

    Article  CAS  Google Scholar 

  35. Tontonoz, P., & Spiegelman, B. M. (2008). Fat and beyond: the diverse biology of PPARγ. Annual Review of Biochemistry, 77(1), 289–312.

    Article  CAS  Google Scholar 

  36. Kim, S. P., Nam, S. H., & Friedman, M. (2015). Food funct. Annual Review of Biochemistry, 6, 2939–2948.

    CAS  Google Scholar 

  37. Linhart, H. G., Ishimura-Oka, K., DeMayo, F., Kibe, T., Repka, D., Poindexter, B., & Darlington, G. J. (2001). C/EBP is required for differentiation of white, but not brown, adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 98(22), 12532–12537.

    Article  CAS  Google Scholar 

  38. Fajas, L., Schoonjans, K., Gelman, L., Kim, J. B., Najib, J., Martin, G., Fruchart, J. C., Briggs, M., Spiegelman, B. M., & Auwerx, J. (1999). Regulation of peroxisome proliferator-activated receptor γ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Molecular and Cellular Biochemistry, 19(8), 5495–5503.

    Article  CAS  Google Scholar 

  39. Clevers, H., Loh, K. M., & Nusse, R. (2014). An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346(6205), 1248012. https://doi.org/10.1126/science.1248012.

    Article  CAS  PubMed  Google Scholar 

  40. Komiya, Y., & Habas, R. (2008). Wnt signal transduction pathways. Organogenesis, 4(2), 68–75.

    Article  Google Scholar 

  41. MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17(1), 9–26.

    Article  CAS  Google Scholar 

  42. Pakula, H., Xiang, D., & Li, Z. (2017). A tale of two signals: AR and WNT in development and tumorigenesis of prostate and mammary gland. Cancers, 9(12), 14. https://doi.org/10.3390/cancers9020014.

    Article  CAS  PubMed Central  Google Scholar 

  43. Liu, J., & Farmer, S. R. (2004). Regulating the balance between peroxisome proliferator-activated receptor γ and β-catenin signaling during adipogenesis. The Journal of Biological Chemistry, 279(43), 45020–45027.

    Article  CAS  Google Scholar 

  44. Moldes, M., Zuo, Y., Morrison, R. F., Silva, D., Park, B. H., Liu, J., & Farmer, S. R. (2003). Peroxisome-proliferator-activated receptor γ suppresses Wnt/β-catenin signalling during adipogenesis. The Biochemical Journal, 376(3), 607–613.

    Article  CAS  Google Scholar 

  45. Bennett, C. N., Ross, S. E., Longo, K. A., Bajnok, L., Hemati, N., Johnson, K. W., Harrison, S. D., & MacDougald, O. A. (2002). Regulation of Wnt signaling during adipogenesis. The Journal of Biological Chemistry, 277(34), 30998–31004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was part of the project entitled “Future Marine Technology Development” funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Moo Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasinghe, M.A., Kim, A.T. & Kim, S.M. Inhibitory Effects of Vanadium-Binding Proteins Purified from the Sea Squirt Halocynthia roretzi on Adipogenesis in 3T3-L1 Adipocytes. Appl Biochem Biotechnol 189, 49–64 (2019). https://doi.org/10.1007/s12010-019-02982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02982-7

Keywords

Navigation