Skip to main content
Log in

Biogas Plasticization Coupled Anaerobic Digestion: Anaerobic Pump Calorimetry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This paper presents the quantitative bomb calorimetric high heat values (HHV) for residue samples collected from the Anaerobic Pump (®TAP) and a continuous flow stirred tank reactor (CFSTR) anaerobically digesting a 50:50 wastewater sludge substrate. TAP, an advanced anaerobic digestion (AD) process, features biogas plasticization that greatly increases gas production and leaves a mineralized residual. Measured residue HHVs are compared to HHV estimates from literature empirical relationships. Two empirical formulations, the Meraz thermodynamic formulation (with 7.4% moisture) (Meraz et al. The Chemical Educator, 7(2), 66–70, (2002) and the Channiwala Universal formulation (Channiwala et al. Fuel, 81(8), 1051–1063, (2002), compared favorably (within ± 3% mean value) with the bomb measured HHV values. A stoichiometric ICC description for Ucells is derived. The thermodynamic formation potentials of all measured residues are derived including Ucells. An empirical method was used to calculate the entropy of formation (∆fS) for all residues and Ucells. Krevelen plots show residue molar ratios of oxygen and hydrogen to carbon (H/C, O/C) are linearly correlated with HHV and formation potentials (∆fG’, ∆fH’, ∆fS’) with strong statistical coefficients of determination (R2). Residue H/C and O/C ratios fell across the peat classification on the biomass coalification diagram. A wide AD methane fermentation zone ≤ 18.6 MJ/kg is identified. The methods and correlation relationships presented enable the computation of accurate HHV and thermodynamic formation potentials without the necessity of direct thermal measurement. These quantitative results confirm that steady state AD of a well-known heterogeneous solid substrate (WWTP sludge) is a linear thermodynamic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HHV:

High heat value (kJ/kg or kJ/mol).

GCV:

Gross Caloric value (kJ/kg or kJ/mol).

IFUCF:

Ion-free unit carbon formula.

ICUCF:

Ion-containing, unit-carbon formula.

ICUCFW:

Ion containing unit carbon formula weight.

C-mol:

Unit carbon mol mass (g/mol).

ICC-mol:

Ion containing carbon mol mass (g/mol).

WAS:

Waste activated sludge substrate.

ΔcHbiomass :

Heat of biomass combustion (kJ/kg or kJ/mol).

U:

Thermodynamic internal energy (kJ/kg or kJ/mol).

F:

Thermodynamic Helmholtz force function (kJ/kg or kJ/mol, kJ/cm2).

G:

Thermodynamic Gibb’s free energy function (kJ/kg or kJ/mol).

H:

Thermodynamic enthalpy heat function (kJ/kg or kJ/mol).

S:

Thermodynamic entropy (J/mol °K).

∆Hc,s°:

Standard change in Enthalpy during oxygen bomb combustion reaction.

∆Uc,s°:

Standard change in internal energy during combustion reaction.

dNi :

Change in the number of moles of species i during a reaction (∆ moles).

Rf :

Refractory coefficient that represents the fraction of particulate COD that is nonbiodegradable at infinite digestion time (gram resistant COD/gram input substrate COD).

R2 :

Correlation coefficient of determination (no units).

V:

Volume (liters).

T:

Absolute temperature, (°K).

μi :

Thermodynamic chemical potential of chemical species i (kJ/mol).

ni :

Number of moles of chemical species i (moles).

dni :

Change in the number of moles of species i produced in a chemical reaction (Δ moles).

AE:

Available electrons transferred during a biological fermentation reaction.

eeq:

Total electron equivalents transferred during biological or bomb combustion reactions.

fGofHofSo :

Change free energy, enthalpy, or entropy of formation, respectively, of a specified quantity 1 mol of a pure substance in its standard state (zero superscript o) at 298.15 °K and one atmosphere.

fG’ ∆fH’ ∆fS’:

Change free energy, enthalpy, or entropy of formation, respectively, of a specified quantity of an impure (apostrophe superscript ‘) substance in aqueous solution or suspension, not having a standard state at 298.15 K and 1 atm and activity of 0.001 M.

References

  1. Arthurson, V. (2009). Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – Potential benefits and drawbacks. Energies, 2, 226–242.

    Article  CAS  Google Scholar 

  2. Shizas, I., & Bagley, D. M. (2004). Experimental determination of energy content of unknown organics in municipal wastewater streams. Journal of Energy Engineering, 130(2), 4553.

    Article  Google Scholar 

  3. USDOE NREL, and USEPA. (1995). Case studies in residual use and energy conservation at wastewater treatment plants (p. 66). Washington, D.C: NREL.

    Google Scholar 

  4. Stillwell, A. S., Hoppock, D. C., & Webber, M. E. (2010). Energy recovery from wastewater treatment plants in the United States: A case study of the energy-water nexus. Sustainability, 2(4), 945–962.

    Article  Google Scholar 

  5. Abusoglu, A., Demir, S., & Kanoglu, M. (2011). Thermodynamic Analysis and Assessment of a Wastewater Treatment Plant in Scope of Anaerobic Sludge Digestion and On-site Electricity Production From Biogas. In 2nd International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS2), ELCAS2: Nisyros.

  6. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1(5), 1–9.

    PubMed Central  Google Scholar 

  7. Schimel, K. A. (1980). Anaerobic Vacuum Digestion of Raw Waste Activated Sludge. Ph.D. thesis, Syracuse University, Syracuse.

  8. Schimel, K. A. (1983). Method for the Treatment of Organic Material and Particularly Sewage Sludge: U.S. patent 4,375,412.

  9. Schimel, K. A. (1987). Method for the Treatment of Organic Material and Particularly Sewage Sludge: U.S. patent 4,642,187.

  10. Schimel, K. A. (2003). Apparatus, system, and process for anaerobic conversion of biomass slurry to energy: U.S. patent 6,663,777.

  11. Schimel, K. A. (2006). Biogas Plasticization Coupled Anaerobic Digestion: Batch Test Results. In Biotech Bioeng., vol. 2006. Wiley InterScience. https://doi.org/10.1002/bit.21227, http://www.interscience.wiley.com.

  12. Schimel, K. A. (2007). Biogas plasticization coupled anaerobic digestion: Batch test results. Biotechnology and Bioengineering, 97(2), 297–307.

    Article  CAS  PubMed  Google Scholar 

  13. Schimel, K. A., & Boone, D. R. (2010). Biogas plasticization coupled anaerobic digestion: Continuous flow anaerobic pump test results. Applied Biochemistry and Biotechnology, 160(3), 912–926.

    Article  CAS  PubMed  Google Scholar 

  14. Schimel, K. A. (2014). Biogas plasticization coupled anaerobic digestion: The anaerobic pump stoichiometry. Applied Biochemistry and Biotechnology, 172(4), 2227–2252.

    Article  CAS  PubMed  Google Scholar 

  15. USDOE EERE. (2002). Anaerobic Pump. Washington D.C: DOE.

  16. California Energy Commission. (2002). In H. Clark (Ed.), The anaerobic pump prototype testing: Feasibility analysis (p. 11). San Diego: San Diego State University Foundation.

    Google Scholar 

  17. Boone, D. R., & Schimel, K. A. (2001). Final report: The anaerobic pump prototype testing. Sacramento: California Energy Commission.

    Google Scholar 

  18. Finney, C. D. (1975). Anaerobic digestion: The rate limiting process and the nature of inhibition. Science, 190(4219), 1088–1089.

    Article  CAS  Google Scholar 

  19. Finney, C. D. (1976). The fast production of methane by anaerobic digestion, Washington D.C., Energy Research and Development Administration, Progress Reports COO-2900-3,-4,-5,-6.

  20. Ort, J. E. (1976). High quality methane gas through modified anaerobic digestion: US.

  21. Narasimhan, B., & Peppas, N. A. (1996). Disentanglement and Reptation during dissolution of rubbery polymers. Journal of Polymer Science Polymer Physics Edition, 34(5), 947–961.

    Article  CAS  Google Scholar 

  22. Sears, J. K., & Darby, J. R. (1982). The Technology of Plasticizers, Wiley-Interscience, New York.

  23. Soeradji, S. (1972). Mechanisms of Ammonia Sorption by Wood. Ph.D. thesis, SUNY Environmental Science and Forestry, Syracuse.

  24. Battley, E. H. (1993). The thermodynamics of growth of Escherichia Coli K-12 on succinic acid. Pure and Applied Chemistry, 65(9), 1881–1886.

    Article  CAS  Google Scholar 

  25. Battley, E. H. (1998). The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochimica Acta, 309(1-2), 17–37.

    Article  CAS  Google Scholar 

  26. Battley, E. H. (1999). An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochimica Acta, 326(1-2), 7–15.

    Article  CAS  Google Scholar 

  27. Battley, E. H. (1999). The Thermodynamics of Microbial Growth. In P. K. Gallagher, M. E. Brown, & R. B. Kemp (Eds.), Handbook of Thermal Analysis and Calorimetry, Volume From macromolecules to man (pp. 219–277). Amsterdam: Elsevier.

    Google Scholar 

  28. Domalski, E. S. (1972). Selected values of heats of combustion and heats of formation of organic Coumpounds containing the elements C,H,N,O,P and S. Journal of Physical and Chemical Reference Data, 1(2), 221–277.

    Article  CAS  Google Scholar 

  29. Guggenheim, E. A. (1950). Thermodynamics : An advanced treatment for chemists and physicists in monographs on Theroretical and applied physics II (2nd ed.). Amsterdam: North - Holland publishing Company Interscience Publishers.

    Google Scholar 

  30. Parr Instrument Company. (2010). Experiment 1: Adiabatic Bomb Calorimeter (p. 7). Moline: Parr Instrument Company.

    Google Scholar 

  31. Jol, S. J., Kümmel, A., Hatzimanikatis, V., Beard, D. A., & Heinemann, M. (2010). Thermodynamic calculations for biochemical transport and reaction processes in metabolic networks. Biophysical Journal, 99(10), 3139–3144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alberty, R. A. (2003). Thermodynamics of biochemical reactions. Hoboken: Wiley-Interscience.

    Book  Google Scholar 

  33. Alberty, R. A. (2006). Relations between biochemical thermodynamics and biochemical kinetics. Biophysical Chemistry, 124(1), 11–17.

    Article  CAS  PubMed  Google Scholar 

  34. Kohn, R. A., & Boston, R. C. (2000). The Role of Thermodynamics in Controlling Rumen Metabolism. In J. P. McNamara, J. France, & D. E. Beever (Eds.), Modeling Nutrient Utilization in Farm Animals (pp. 11–24). Wallingford: CAB International.

    Chapter  Google Scholar 

  35. Oh, S. T., & Martin, A. D. (2007). Thermodynamic equilibrium model in anaerobic digestion process. Biochemical Engineering Journal, 34(3), 256–266.

    Article  CAS  Google Scholar 

  36. Jenkins, B. M., Baxter, L. L., Miles, T., Jr., & Miles, T. R. (1998). Combustion properties of biomass. Fuel Processing Technology, 54(1-3), 17–46.

    Article  CAS  Google Scholar 

  37. Wenyi, D., Xiaodong, L., Jianhua, Y., Fei, W., & Chi Yong, C. K. (2011). Moisture distribution in sludges based on different testing methods. Journal of Environmental Sciences, 23, 875–880.

    Article  CAS  Google Scholar 

  38. Flaga, A. (2006). Sludge Drying. In Polish-Swedish-Ukrainian Seminar Research and Application of New Technologies in Wastewater Treatment and Municipal Solid Waste Disposal in Ukraine, Sweden and Poland, Ukraine (pp. 73–82), Warszawska: Ukraine.

  39. Sokhansanj, S. (2011). The Effect of Moisture on Heating Values (Oak Ridge TN: Oak Ridge National Laboratory).

  40. Channiwala, S. A., & Parikh, P. P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063.

    Article  CAS  Google Scholar 

  41. Barber W. P. F. (2007). Observing the Effects of digestion and chemical dosing on the calorific value of sewage sludge. In R. LeBlanc, P. Matthews, & R. P. Richard (Eds.), IWA Specialist Conference: Moving forward Wastewater Biosolids Sustainability: Technical, Managerial, and Public Synergy (pp. 351–358). Moncton, New Brunswick, Canada.

  42. Bech, N., Jensen, P. A., & Kim, K. J. (2009). Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition. Biomass and Bioenergy, 33(3), 534–537.

    Article  CAS  Google Scholar 

  43. Puchong, T., Vissanu, M., Pramoch, R., Boonyarach, K., Kitipat, S., & Thirasak, R. (2006). Sewage sludge heating value prediction through proximate and ultimate analyses. Asian Journal of Energy and Environment, 7(2), 324–335.

  44. van Krevelen, D. W. (1993). Coal – Typology – Physics – Chemistry - constitution (3rd ed.). Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  45. van Krevelen, D. W., & Schuyer, J. (1957). Coal science. Amsterdam: Elsevier Publishing Company.

    Google Scholar 

  46. Grabosky, M., & Bain, R. (1981). In T. B. Reed (Ed.), Properties of Biomass Relevent to Gasification. In Biomass gasification - principles and technology (pp. 41–46). Park Ridge: Noyes Data Corporation.

    Google Scholar 

  47. Meraz, L., Oropeza, M., & Dominguez, A. (2002). Prediction of the combustion enthalpy of municipal solid waste. The Chemical Educator, 7(2), 66–70.

    Article  CAS  Google Scholar 

  48. Vesilind, P. A. (1980). Treatment and Disposal of Wastewater Sludges (Revised ed.). Ann Arbor: Ann Arbor Science Publishers Inc..

  49. Niessen, W. R. (1995). Combustion and incineration process - application in environmental engineering. New York: Marcel Dekker.

    Google Scholar 

  50. Parr Instrument Company. (1997). Operating Instructions for 1241 Oxygen Bomb Calorimeter. Moline: Parr Instrument Company.

    Google Scholar 

  51. Washburn Edward, W. (1933). Standards for bomb calorimetry. Bureau of Standards Journal of Research, 10(4), 525–558.

    Article  Google Scholar 

  52. Thornton, W. M. (1917). XV.The relation of oxygen to the heat of combustion of organic compounds. Philosophical Magazine, 33(194), 196–203.

    CAS  Google Scholar 

  53. Rouf, M. A. (1964). Spectrochemical analysis of inorganic elements in Bacteria. Jounal of Bacteriology, 88, 1545–1549.

    CAS  Google Scholar 

  54. Loehr, R. C. (1974). Agricultural waste management. New York: Academic.

    Google Scholar 

  55. Luria, S. E. (1960). The bacterial protoplasm: Compostion and organization. In I. C. Gunsalas & R. Y. Stanier (Eds.), The Bacteria (Vol. 1). New York: Academic Press Inc..

    Google Scholar 

  56. Porges, N., Jasewicz, L., & Hoover, S. R. (1953). Biological Oxidation of Dairywaste. VII. Purification, Oxidation, Synthesis and Storage. In 10th Purdue Industrial Waste Conference, vol. 1, Industrial Waste Conference: Purdue Indiana.

  57. VanBriesen, J. M., & Rittmann, B. E. (2000). Mathematical description of microbial reactions involving intermediates. Biotechnology and Bioengineering, 67(1), 35–52.

    Article  CAS  PubMed  Google Scholar 

  58. McCarty, P. L. (1969). Energetics and bacterial growth. In The Fifth Rudolf Research Conference. New Brunswick: Rutgers University.

    Google Scholar 

  59. McCarty, P. L. (1965). Thermodynamics of Biological Synthesis and Growth. In J. Baers (Ed.), Advances in Water Pollution Research: Proceedings of the 2nd International Conference on Water Pollution Research (pp. 169–199). Oxford: Pergamon Press, Inc.

    Google Scholar 

  60. McCarty, P. L. (1972). Energetics of organic matter degradation. In R. Mitchell (Ed.), Water pollution microbiology. New York: Wiley Interscience.

    Google Scholar 

  61. Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28(5), 499–507.

    Article  CAS  Google Scholar 

  62. McCarty, P. L. (1975). Stoichiometry of biological reactions. Progress in Water Technology, 7, 157–172.

    CAS  Google Scholar 

  63. Thornton, W. M. (1917). The relation of oxygen to the heat of combustion of organic compounds. Philosophical Magazine, 33, 196–203.

    CAS  Google Scholar 

  64. Schobert, H. H. (1995). Coal Science and Technology 23, Lignites of North America. Amsterdam: Elsevier.

    Google Scholar 

  65. Demirbas, A. (2001). Relationships between lignin contents and heating values of biomass. Energy Conversion and Management, 42(2), 183–188.

    Article  CAS  Google Scholar 

  66. Malayil, S., & Chanakya, H. N. (2016). Fungal enzyme cocktail treatment of biomass for higher biogas production from leaf litter. Procedia Environmental Sciences, 35, 826–832.

    Article  CAS  Google Scholar 

  67. Patel, S. A., & Erickson, L. E. (1981). Estimation of heats of combustion of biomass from elemental analysis using available electron concepts. Biotechnology and Bioengineering, 23(9), 2051–2067.

    Article  CAS  Google Scholar 

  68. Weast, R. C. (Ed.). (1988). Handbook of chemistry and physics (1st ed.). Boca Raton: CRC Press.

    Google Scholar 

  69. IUPAC. (2005). IUPAC critical evaluation of thermochemical properties of selected radicals part I. Journal of Physical and Chemical Reference Data, 34, 573–656.

    Article  CAS  Google Scholar 

  70. Rand, M. C. (Ed.). (1975). Standard Methods for Examination of Water and Wastewater (14th ed.). Washington D. C.: APHA, AWWA, WPCF.

    Google Scholar 

  71. Metcalf & Eddy Inc. (1979). Wastewater engineering : Treatment disposal and reuse (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  72. Zanoni, A. E., & Mueller, D. L. (1982). Calorific value of wastewater plant sludges. Journal of the Environmental Engineering Division, 108, 187–195.

    Google Scholar 

  73. Vesilind, P. A., & Ramsey, T. B. (1996). Effect of drying temperature on the fuel value of wastewater sludge. Waste Management and Research, 14(2), 189–196.

Download references

Acknowledgments

My special thanks goes to Dr. Standard Methods, Myrton (Mike) C. Rand [70], whose knowledge of fundamental processes helped envision a way of completing wet solid biomass AD conversion to methane long before it became “obvious.” His vision and technical and intellectual rigor inspired me to accept the challenge in the early years of creating the Anaerobic Pump.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Schimel.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 29.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schimel, K.A. Biogas Plasticization Coupled Anaerobic Digestion: Anaerobic Pump Calorimetry. Appl Biochem Biotechnol 189, 511–540 (2019). https://doi.org/10.1007/s12010-019-03007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03007-z

Keywords

Navigation