Skip to main content
Log in

Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Potassium is an important mineral for biological functions. In this study, potassium was recovered from a low-grade potash mineral, feldspar through chlorination roasting followed by water leaching. NaCl and CaCl2 were used as additives for chlorination roasting independently The characterizations throughout the studies were carried out using a series of analytical and spectral techniques like XRD, SEM, FTIR, and Raman spectroscopy The effects of various experimental parameters such as particle size, roasting temperature, amounts of additives, and water leaching on potassium extraction were evaluated. Water leaching was found to be independent of leaching time, temperature, and agitator speed. During roasting, the formation of water-soluble phase was evident; this phase subsequently disappeared on water leaching. The potassium extraction kinetics in the presence of both the additives was satisfactorily corroborated by Ginstling-Brounshtein model. The activation energies for CaCl2 and NaCl roasting were calculated to be 90 and 122 kJ/mole, respectively. Under the same experimental conditions, 86% of potassium extraction (as potash value) was accomplished using CaCl2 as the additive, whereas the extraction in presence of NaCl was only up to 44%. The mechanism of potassium extraction was elucidated; the superior effectiveness of CaCl2 over NaCl in the extraction process was also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. R. Mousavi, M. T. Tavakoli, A. I. Chenari and M. Rezaie, Adv. Environ. Biol., 8, 10 (2014).

    Google Scholar 

  2. D. A. C. Manning, Agr. Sustainable Dev., 30, 2 (2010).

    Google Scholar 

  3. P. Heffer and M. Prudhomme, Fertilizer outlook 2016–2020, 84th IFA Annual Conference, Moscow-Russia (2016).

  4. W.M. Stewart, D. W. Dibb, A. E. Johnston and T. J. Smyth, Agron. J., 97, 1 (2005).

    Article  Google Scholar 

  5. R. C. Fluck, Energy and alternatives for fertiliser and pesticides use, chapter 13. Energy in farm production (2012).

  6. J. Pretty and Z. P. Bharucha, Ann. Bot., 114, 8 (2014).

    Article  Google Scholar 

  7. B. K. Kinekar, Karnataka J. Agric. Sci., 24, 1 (2011).

    Google Scholar 

  8. M. A. Hongwen, Y. Jing, S. Shuangging, L. Meitang, Z. Hong, W. Yingbin, Q. Hongb, Z. Pan and Y. Wengui, Acta Geol. Sin., 89, 6 (2015).

    Article  Google Scholar 

  9. D. Ciceri, D. A. C. Manning and A. Allanore, Sci. Total Environ., 502, 590 (2015).

    Article  CAS  Google Scholar 

  10. Y. Zhang, E. Asselin and Z. Li, J. Chem. Eng. Jpn., 49, 111 (2016).

    Article  CAS  Google Scholar 

  11. J. A. Marinsky and Y. Marcus, Ion exchange and solvent extraction, Vol. 12, Marcel Dekker Inc., New York (1995).

    Google Scholar 

  12. A. Bajpayee, T. Luo, A. Muto and G. Chen, Energy Environ. Sci., 4, 1672 (2011).

    Article  CAS  Google Scholar 

  13. J. Hou, J. Yuan and R. Shang, Powder Technol., 226, 222 (2012).

    Article  CAS  Google Scholar 

  14. L. Pan, A. B. Zhang, J. Sun, Y. Ye, X. G. Chen and M. S. Xia, Miner. Eng., 49, 121 (2013).

    Article  CAS  Google Scholar 

  15. C. Karaguzel, I. Gulgonul, C. Demir, M. Cinarand and M. S. Celik, Int. J. Miner. Process., 81, 122 (2006).

    Article  CAS  Google Scholar 

  16. G.W. Heyes, G.C. Allan, W.J. Bruckard and G.J. Sparrow, Trans. Inst. Min. Metall., C121, 72 (2012).

    Google Scholar 

  17. O. Bayat, V. Arslan and Y. Cebeci, Miner. Eng., 19, 98 (2006).

    Article  CAS  Google Scholar 

  18. Z. Sekulic, N. Canic, Z. Bartulovic and A. Dakovic, Miner. Eng., 17, 77 (2004).

    Article  CAS  Google Scholar 

  19. G. R. Holdren and P. M. Speyer, Am. J. Sci., 285, 994 (1985).

    Article  CAS  Google Scholar 

  20. S. Su, H. Ma and X. Chuan, Adv. Powder Technol., 27, 139 (2016).

    Article  CAS  Google Scholar 

  21. S. K. Jena, N. Dhawan, D. S. Rao, P. K. Misra, B. K. Mishra and B. Das, Int. J. Miner. Process., 133, 13 (2014).

    Article  CAS  Google Scholar 

  22. S. K. Jena, N. Dhawan, D. S. Rao, P. K. Misra and B. Das, Sep. Sci. Technol., 51, 269 (2016).

    Article  CAS  Google Scholar 

  23. I. Styriakova, I. Styriak, P. Malachovsky and M. Lova, Miner. Eng., 19, 348 (2006).

    Article  CAS  Google Scholar 

  24. A. Roy, S.K. Singh, P.C. Banerjee, K. Dana and S.K. Das, Bull. Mater. Sci., 33, 333 (2010).

    Article  CAS  Google Scholar 

  25. I. Dogu and A. I. Arol, Powder Technol., 139, 258 (2004).

    Article  CAS  Google Scholar 

  26. S. K Jena, P. K. Misra and B. Das, Miner. Process. Extr. Metall. Rev., 37, 323 (2016).

    Article  CAS  Google Scholar 

  27. A.K. Mazumder, T. Sharma and T.C. Rao, Int. J. Miner. Process., 38, 111 (1993).

    Article  CAS  Google Scholar 

  28. S. Shekhar, D. Mishra, A. Agarwal and K. K. Sahu, Appl. Clay Sci., 143, 50 (2017).

    Article  CAS  Google Scholar 

  29. J. R. Rao, R. Nayak and A. Suryanarayan, Asian J. Chem., 10, 690 (1998).

    CAS  Google Scholar 

  30. Z. Hao, S. Desi and B. Hong, Adv. Mat. Res., 524-527, 524–527 (1136).

    Google Scholar 

  31. B. Yuan, C. Li, B. Liang, L. Lu, H. Yue, H. Sheng, L. Ye and H. Xie, Chin. J. Chem. Eng., 23, 1557 (2015).

    Article  CAS  Google Scholar 

  32. X. Heping, W. Yufei, J. Yang, L. Bin, Z. Jiahua, Z. Ru, X. Lingzhi, L. Tao, Z. Xiangge, Z. Hongmei, L. Chun and L. Houfang, Chinese Sci. Bull., 58, 128 (2003).

    Google Scholar 

  33. S. K. Jena, N. Dhawan, S. S. Rath, D. S. Rao and B. Das, Sep. Purif. Technol., 161, 104 (2016).

    Article  CAS  Google Scholar 

  34. R. Nayak, J. R. Rao, A. Suryanarayana and B. B. Nayak, J. Sci. Ind. Res., 56, 173 (1997).

    CAS  Google Scholar 

  35. P. L. G. Ladeira, World Intellectual Property Organisation, International Publication No — WO2013/061092 A1 (2013).

  36. S. K. Liu, C. Han, J. M. Liu and H. Li, RSC Adv., 113, 5 (2015).

    CAS  Google Scholar 

  37. M. Kumanan, G. Sathya, V. Nandakumarand and L. J. Berchmans, Extraction of potash from K-feldspar mineral by acid and molten salt leaching process, July — Special Edition, www.iaset.us (2016).

  38. W. U. Malik, G. D. Tuli and R. D. Madan, Selected Topics in Inorganic Chemistry, S. Chand and Sons Publisher, New Delhi — India (2010).

    Google Scholar 

  39. Anorthite, https://www.mindat.org.

  40. H. Beherens and G. Muller, Miner. Mag., 59, 15 (1995).

    Article  Google Scholar 

  41. Z. Lingdi, G. Jiugo, Y. Nianhua and L. Liyun, Sci. China Ser. D., 40, 159 (1997).

    Google Scholar 

  42. M. Zhang, E.K.H. Salje, M.A. Carpenter, I. Parsons, H. Kroll, S. J. B. Reed and A. Graeme-Barber, Am. Miner., 82, 9 (1997).

    Google Scholar 

  43. V. Bendel and B. C. Schmidt, Eur. J. Miner., 20, 1055 (2008).

    Article  CAS  Google Scholar 

  44. J. J. Freeman, A. Wang, E. K. Kuebler, B. L. Jolliff and L. A. Haskin, Can. Miner., 46, 1477 (2008).

    Article  CAS  Google Scholar 

  45. T. P. Mernagh, J. Raman Spectros., 22, 458 (1991).

    Article  Google Scholar 

  46. A. Khawam and D. R. Flanagan, J. Phys. Chem. B, 110, 17315 (2006).

    Article  CAS  Google Scholar 

  47. E. Vitz, J. W. Moore, J. Shorb, X. P. Resina, T. Wendorff and A. Hahn, https://chem.libretexts.org/Ancillary_Materials/Exemplars_and_Case_Studies/Exemplars/Geology/Silicon_Dioxide_in_Earth's_Crust (2019).

  48. T. Skorina and A. Allanore, Green Chem., 17, 2123 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank UGC (No.F.540/14/DRS/2013 (SAP-I)) and DST (SR/FST/CSII-021/2012(G)) for financial support to the School of Chemistry, Sambalpur University, India. The authors gratefully acknowledge the Director, CSIR-IMMT, Bhubaneswar, India for providing experimental facilities. Special thanks to Dr. Bisweswar Das, Chief Scientist, IMMT Bhubaneswar for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandeep Kumar Jena or Pramila Kumari Misra.

Supporting Information

11814_2019_393_MOESM1_ESM.pdf

Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.K., Dash, N., Samal, A.K. et al. Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects. Korean J. Chem. Eng. 36, 2060–2073 (2019). https://doi.org/10.1007/s11814-019-0393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0393-9

Keywords

Navigation