Skip to main content
Log in

Multi-chain slip-spring simulations for polyisoprene melts

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The multi-chain slip-spring (MCSS) model is a coarse-grained molecular model developed for efficient simulations of the dynamics of entangled polymers. In this study, we examined the model for the viscoelasticity of polyisoprene (PI) melts, for which the data are available in the literature. We determined the conversion factor for the molecular weight from the fitting of the molecular weight dependence of zero-shear viscosity. According to the obtained value, we calculated the linear viscoelasticity of several linear PI melts to determine the units of time and modulus. Based on the conversion factors thus determined, we predicted linear viscoelasticity of 6-arm star PI melts, and viscosity growth under high shear for linear PI melts. The predictions were in good agreement with the data, demonstrating the validity of the method. The conversion factors determined were consistent with those reported for polystyrene melts earlier, whereas the relations between the conversion factors are still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Goad, M., W. Pyckhout-Hintzen, S. Kahle, J. Allgaier, D. Richter, and L.J. Fetters, 2004, Rheological properties of 1,4-polyisoprene over a large molecular weight range, Macromolecules37, 8135–8144.

    Article  CAS  Google Scholar 

  • Auhl, D., J. Ramirez, A.E. Likhtman, P. Chambon, and C. Ferny-hough, 2008, Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights, J. Rheol.52, 801–835.

    Article  CAS  Google Scholar 

  • Baig, C., P.S. Stephanou, G. Tsolou, V.G. Mavrantzas, and M. Kröger, 2010a, Understanding dynamics in binary mixtures of entangled cis-1,4-polybutadiene melts at the level of primitive path segments by mapping atomistic simulation data onto the tube model, Macromolecules43, 8239–8250.

    Article  CAS  Google Scholar 

  • Baig, C., V.G. Mavrantzas, and M. Kröger, 2010b, Flow effects on melt structure and entanglement network of linear polymers: Results from a nonequilibrium molecular dynamics simulation study of a polyethylene melt in steady shear, Macromolecules43, 6886–6902.

    Article  CAS  Google Scholar 

  • Chappa, V.C., D.C. Morse, A. Zippelius, and M. Müller, 2012, Translationally invariant slip-spring model for entangled polymer dynamics, Phys. Rev. Lett.109, 148302.

    Article  CAS  Google Scholar 

  • Costanzo, S., Q. Huang, G. Ianniruberto, G. Marrucci, O. Hassager, and D. Vlassopoulos, 2016, Shear and extensional rhe-ology of polystyrene melts and solutions with the same number of entanglements, Macromolecules49, 3925–3935.

    Article  CAS  Google Scholar 

  • Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon press, Oxford.

    Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, Inc, New York.

    Google Scholar 

  • Gotro, J.T. and W.W. Graessley, 1984, Model hydrocarbon polymers: Rheological properties of linear polyisoprenes and hydrogenated polyisoprenes, Macromolecules17, 2767–2775.

    Article  CAS  Google Scholar 

  • Kremer, K. and G.S. Grest, 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, J. Chem. Phys.92, 5057–5086.

    Article  CAS  Google Scholar 

  • Kumar, S. and R.G. Larson, 2001, Brownian dynamics simulations of flexible polymers with spring-spring repulsions, J. Chem. Phys.114, 6937–6941.

    Article  CAS  Google Scholar 

  • Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-plathe, 2013, Recovering the reptation dynamics of polymer melts in dissipative particle dynamics simulations via slip-springs, J. Chem. Phys. 138, 104907.

    Google Scholar 

  • Langeloth, M., Y. Masubuchi, M.C. Böhm, and F. Müller-Plathe, 2014, Reptation and constraint release dynamics in bidisperse polymer melts, J. Chem. Phys.141, 194904.

    Article  CAS  Google Scholar 

  • Likhtman, A.E., 2005, Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rhe-ology, and diffusion, Macromolecules38, 6128–6139.

    Article  CAS  Google Scholar 

  • Likhtman, A.E. and T.C.B. McLeish, 2002, Quantitative theory for linear dynamics of linear entangled polymers, Macromolecules35, 6332–6343.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., 2014, Simulating the flow of entangled polymers, Annu. Rev. Chem. Biomol. Eng.5, 11–33.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., 2015, Effects of degree of freedom below entanglement segment on relaxation of polymer configuration under fast shear in multi-chain slip-spring simulations, J. Chem. Phys.143, 224905.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., 2016a, Molecular Modeling for Polymer Rheology, In: Reference Module in Materials Science and Materials Engineering, Elsevier Inc., 1–7.

    Google Scholar 

  • Masubuchi, Y., 2016b, PASTA and NAPLES: Rheology Simulator, In: Computer Simulation of Polymeric Materials, Springer Singapore, Singapore, 101–127.

    Chapter  Google Scholar 

  • Masubuchi, Y., 2018, Multichain slip-spring simulations for branch polymers, Macromolecules51, 10184–10193.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2003, Entanglement molecular weight and frequency response of sliplink networks, J. Chem. Phys.119, 6925–6930.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., G. Ianniruberto, F. Greco, and G. Marrucci, 2004, Molecular simulations of the long-time behaviour of entangled polymeric liquids by the primitive chain network model, Model. Simul. Mater. Sci. Eng.12, S91–S100.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., G. Ianniruberto, and G. Marrucci, 2018, Stress undershoot of entangled polymers under fast startup shear flows in primitive chain network simulations, Nihon. Reoroji. Gakk.46, 23–28.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., J.-I. Takimoto, K. Koyama, G. Iannir uber to, G. Marrucci, and F. Greco, 2001, Brownian simulations of a network of reptating primitive chains, J. Chem. Phys. 11 5, 4387–4394.

    Article  CAS  Google Scholar 

  • Masubuchi, Y., M. Langeloth, M.C. Böhm, T. Inoue, and F. Müller-Plathe, 2016, A multichain slip-spring dissipative particle dynamics simulation method for entangled polymer solutions, Macromolecules49, 9186–9191.

    Article  CAS  Google Scholar 

  • Masubuchi, Y. and T. Uneyama, 2018a, Comparison among multi-chain models for entangled polymer dynamics, Soft Matter14, 5986–5994.

    Article  CAS  Google Scholar 

  • Masubuchi, Y. and T. Uneyama, 2018b, Comparison among multi-chain simulations for entangled polymers under fast shear, ECS Trans.88, 161–167.

    Article  CAS  Google Scholar 

  • Masubuchi, Y. and T. Uneyama, 2019, Retardation of the reaction kinetics of polymers due to entanglement in the post-gel stage in multi-chain slip-spring simulations, Soft Matter15, 5109–5115.

    Article  Google Scholar 

  • Matsumiya, Y., Y. Masubuchi, T. Inoue, O. Urakawa, C.-Y. Liu, E. van Ruymbeke, and H. Watanabe, 2014, Dielectric and vis-coelastic behavior of star-branched polyisoprene: Two coarsegrained length scales in dynamic tube dilation, Macromolecules47, 7637–7652.

    Article  CAS  Google Scholar 

  • Matsushima, S., A. Takano, Y. Takahashi, and Y. Matsushita, 2017, Dynamic viscoelasticity of a series of poly(4-n-alkylstyrene)s and their alkyl chain length dependence, Polymer133, 137–142.

    Article  CAS  Google Scholar 

  • Megariotis, G., G.G. Vogiatzis, A.P. Sgouros, and D.N. Theodorou, 2018, Slip spring-based mesoscopic simulations of polymer networks: Methodology and the corresponding computational code, Polymers10, 1156.

    Article  CAS  Google Scholar 

  • Nafar Sefiddashti, M.H., B.J. Edwards, and B. Khomami, 2015, Individual chain dynamics of a polyethylene melt undergoing steady shear flow, J. Rheol.59, 119–153.

    Article  CAS  Google Scholar 

  • Padding, J.T. and W.J. Briels, 2001, Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242, J. Chem. Phys.115, 2846–2859.

    Article  CAS  Google Scholar 

  • Pan, G. and C.W. Manke, 2003, Developments toward simulation of entangled polymer melts by dissipative particle dynamics (DPD), Int. J. Mod. Phys. B17, 231–235.

    Article  CAS  Google Scholar 

  • Ramírez-Hernández, A., B.L. Peters, L. Schneider, M. Andreev, J.D. Schieber, M. Müller, M. Kröger, and J.J. de Pablo, 2018, A detailed examination of the topological constraints of lamellae-forming block copolymers, Macromolecules51, 2110–2124.

    Article  CAS  Google Scholar 

  • Ramírez-Hernández, A., B.L. Peters, M. Andreev, J.D. Schieber, and J.J. de Pablo, 2015, A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology, J. Chem. Phys. 143, 243147.

    Google Scholar 

  • Ramírez-Hernández, A., F.A. Detcheverry, B.L. Peters, V.C. Chappa, K.S. Schweizer, M. Müller, and J.J. de Pablo, 2013, Dynamical simulations of coarse grain polymeric systems: Rouse and Entangled dynamics, Macromolecules46, 6287–6299.

    Article  CAS  Google Scholar 

  • Sgouros, A.P., G. Megariotis, and D.N. Theodorou, 2017, SlipSpring Model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations, Macromolecules50, 4524–4541.

    Article  CAS  Google Scholar 

  • Stephanou, P.S., C. Baig, G. Tsolou, V. G. Mavrantzas, and M. Kröger, 2010, Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model, J. Chem. Phys.132, 124904.

    Article  CAS  Google Scholar 

  • Uneyama, T., 2011, Single chain slip-spring model for fast rhe-ology simulations of entangled polymers on GPU, Nihon. Reoroji. Gakk.39, 135–152.

    Article  CAS  Google Scholar 

  • Uneyama, T. and Y. Masubuchi, 2012, Multi-chain slip-spring model for entangled polymer dynamics, J. Chem. Phys.137, 154902.

    Article  CAS  Google Scholar 

  • Uneyama, T., Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A.A. Pathak, C.M. Roland, and C.M. Roland, 2009, A theoretical analysis of rheodielectric response of type-A polymer chains, J. Polym. Sci. Pt. B-Polym. Phys.47, 1039–1057.

    Article  CAS  Google Scholar 

  • Vogiatzis, G.G., G. Megariotis, and D.N. Theodorou, 2017, Equation of state based slip spring model for entangled polymer dynamics, Macromolecules50, 3004–3029.

    Article  CAS  Google Scholar 

  • Xu, X., J. Chen, and L. An, 2015, Simulation studies on architecture dependence of unentangled polymer melts, J. Chem. Phys.142, 074903.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grant-in-Aid for Scientific Research (A) (17H01152), (B) (19H01861) and for Scientific Research on Innovative Areas (18H04483) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Masubuchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on an invited lecture presented by the corresponding author at the 30th Anniversary Symposium of the Korean Society of Rheology (The 18th International Symposium on Applied Rheology (ISAR)), held on May 21-24, 2019, Seoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masubuchi, Y., Uneyama, T. Multi-chain slip-spring simulations for polyisoprene melts. Korea-Aust. Rheol. J. 31, 241–248 (2019). https://doi.org/10.1007/s13367-019-0024-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0024-3

Keywords

Navigation