Skip to main content
Log in

Ultrafast imaging of soft materials during shear flow

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The direct imaging of flow induced microstructural changes in complex fluids can have advantages over the use of scattering methods, since localized phenomena can be observed directly and more mechanistic insights can be obtained. This is useful in particular for materials with hierarchical or multiscale structures such as aggregated dispersions. Rheoconfocal instruments are ideally suited for this purpose but were, as yet, limited to relatively low imaging rates. In the present work, a stress-controlled rheometer was coupled to a fast scanning, instant structured illumination confocal microscope which uses a multi-array illumination and detection scheme. A second motor is integrated in a custom-made rheoconfocal instrument to achieve the counter-rotation of the lower glass plate. The resulting stagnation plane can be moved within the shearing gap in real time and allows the stable imaging of micro-structural features under steady shear. Velocity profiles were measured to validate the performance of the mechanical components, using particle image velocimetry on a sterically stabilized suspension. Structured illumination optics yielded an excellent inplane spatial resolution, while the multipoint scanning allows speeds as high as 1000 frames per second at full frame resolution. However, for rheological studies the 3D structure should ideally be resolved. The mechanical refocusing using a fast piezo stage at high speeds led to deformations of the lower thin glass plate. To circumvent this bottleneck, a focus-tunable lens was incorporated in the setup to acquire 3D image volumes at video rates. The excellent combination of temporal and spatial resolution under flow is demonstrated here using selected results from aggregated colloidal dispersions. The microstructure of a model depletion gel is studied over a broad range of shear rates under strong to moderate flow conditions. The ability to measure rheological properties while imaging the time-dependent microstructure is demonstrated with particles dispersed in a more viscous PDMS matrix. Transient rheology is reported simultaneously with high resolution imaging of the microscopic structural recovery. This novel tool enables the direct imaging of rheologically complex materials under conditions relevant to processing, to elucidate the physical phenomena underlying nonlinear rheology and thixotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antl, L., J.W Goodwin, R.D Hill, R.H Ottewill, S.M Owens, S Papworth, and J.A Waters, 1986, The preparation of poly(methyl methacrylate) latices in non-aqueous media, Colloid Surf.17, 67–78.

    Article  CAS  Google Scholar 

  • Asakura, S., and F Oosawa, 1954, On interaction between two bodies immersed in a solution of macromolecules, J. Chem. Phys.22, 1255–1256.

    Article  CAS  Google Scholar 

  • Besseling, R., E.R Weeks, A.B Schofield, and W.C.K Poon, 2007, Three-dimensional imaging of colloidal glasses under steady shear, Phys. Rev. Lett.99, 028301.

    Article  CAS  Google Scholar 

  • Besseling, R., L Isa, E.R Weeks, and W.C.K Poon, 2009, Quantitative imaging of colloidal flows, Adv. Colloid Interface Sci.146, 1–17.

    Article  CAS  Google Scholar 

  • Bhattacharjee, T., S.M Zehnder, K.G Rowe, S Jain, R.M Nixon, W.G Sawyer, and T.E Angelini, 2015, Writing in the granular gel medium, Sci. Adv.1, e1500655.

    Article  Google Scholar 

  • Boitte, J.B., C Vizcaino, L Benyahia, J.M Herry, C Michon, and M Hayert, 2013, A novel rheo-optical device for studying complex fluids in a double shear plate geometry, Rev. Sci. Instrum.84, 013709.

    Article  CAS  Google Scholar 

  • Boukany, P.E., S.Q Wang, S Ravindranath, and L.J Lee, 2015, Shear banding in entangled polymers in the micron scale gap: A confocal-rheoscopic study, Soft Matter11, 8058–8068.

    Article  CAS  Google Scholar 

  • Brujić, J., C. Song, P Wang, C Briscoe, G Marty, and H.A Makse, 2007, Measuring the coordination number and entropy of a 3D jammed emulsion packing by confocal microscopy, Phys. Rev. Lett.98, 248001.

    Article  CAS  Google Scholar 

  • Chan, H.K., and A Mohraz, 2013, A simple shear cell for the direct visualization of step-stress deformation in soft materials, Rheol. Acta52, 383–394.

    Article  CAS  Google Scholar 

  • Chang, C., Q.D Nguyen, and H.P Ronningsen, 1999, Isothermal start-up of pipeline transporting waxy crude oil, J. Non-Newton. Fluid Mech.87, 127–154.

    Article  CAS  Google Scholar 

  • Chen, Y.L., and K.S Schweizer, 2004, Microscopic theory of gelation and elasticity in polymer-particle suspensions, J. Chem. Phys.120, 7212–7222.

    Article  CAS  Google Scholar 

  • Crocker, J., and D.G Grier, 1996, Methods of digital video microscopy for colloidal studies, J. Colloid Interface Sci.179, 298–310.

    Article  CAS  Google Scholar 

  • Derks, D., H Wisman, A. van Blaaderen, and A Imhof, 2004, Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell, J. Phys.-Condes. Matter16, S3917–S3927.

    Article  CAS  Google Scholar 

  • Dibble, C.J., M Kogan, and M.J Solomon, 2006, Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity, Phys. Rev. E74, 041403.

    Article  CAS  Google Scholar 

  • Dutta, S.K., A Mbi, R.C Arevalo, and D.L Blair, 2013, Development of a confocal rheometer for soft and biological materials, Rev. Sci. Instrum.84, 063702.

    Article  CAS  Google Scholar 

  • Eberle, A.P.R., N.J Wagner, and R.C. Castaneda-Priego, 2011, Dynamical arrest transition in nanoparticle dispersions with short-range interactions, Phys. Rev. Lett.106, 105704.

    Article  CAS  Google Scholar 

  • Gallegos, C., and J.M Franco, 1999, Rheology of food, cosmetics and pharmaceuticals, Curr. Opin. Colloid Interface Sci.4, 288–293.

    Article  CAS  Google Scholar 

  • Gasser, U., E.R Weeks, A Schofield, P.N Pusey, and D.A Weitz, 2001, Real-space imaging of nucleation and growth in colloidal crystallization, Science292, 258–262.

    Article  CAS  Google Scholar 

  • Helgeson, M.E., Y Gao, S.E Moran, J Lee, M Godfrin, A Tripathi, A Bose, and P.S Doyle, 2014, Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels, Soft Matter10, 3122–3133.

    Article  CAS  Google Scholar 

  • Hoekstra, H., J Mewis, T Narayanan, and J Vermant, 2005, Multi length scale analysis of the microstructure in sticky sphere dispersions during shear flow, Langmuir21, 11017–11025.

    Article  CAS  Google Scholar 

  • Hsiao, L.C., R.S Newman, S.C Glotzer, and M.J Solomon, 2012, Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels, Proc. Natl. Acad. Sci. U.S.A.109, 16029–16034.

    Article  CAS  Google Scholar 

  • Kegel, W.K., and A. van Blaaderen, 2000, Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions, Science287, 290–293.

    Article  CAS  Google Scholar 

  • Kirchenbuechler, I., D Guu, N.A Kurniawan, G.H Koenderink, and M.P Lettinga, 2014, Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions, Nat. Commun.5, 5060.

    Article  CAS  Google Scholar 

  • Klein, M.K., A Zumbusch, and P Pfleiderer, 2013, Photo-crosslinkable, deformable PMMA colloids, J. Mater. Chem. C1, 7228–7236.

    Article  CAS  Google Scholar 

  • Koehler, S.A., S Hilgenfeldt, E.R Weeks, and H.A Stone, 2002, Drainage of single Plateau borders: Direct observation of rigid and mobile interfaces, Phys. Rev. E66, 040601.

    Article  CAS  Google Scholar 

  • Koumakis, N., E Moghimi, R Besseling, W.C.K Poon, J.F Brady, and G Petekidis, 2015, Tuning colloidal gels by shear, Soft Matter11, 4640–4648.

    Article  CAS  Google Scholar 

  • Lin, N.Y.C., J.H McCoy, X Cheng, B Leahy, J.N Israelachvili, and I Cohen, 2014, A multi-axis confocal rheoscope for studying shear flow of structured fluids, Rev. Sci. Instrum.85, 033905.

    Article  CAS  Google Scholar 

  • Lu, P.J., E Zaccarelli, F Ciulla, A.B Schofield, F Sciortino, and D.A Weitz, 2008, Gelation of particles with short-range attraction, Nature453, 499–503.

    Article  CAS  Google Scholar 

  • Palangetic, L., K Feldman, R Schaller, R Kalt, W.R Caseri, and J Vermant, 2016, From near hard spheres to colloidal surfboards, Faraday Discuss.191, 325–349.

    Article  CAS  Google Scholar 

  • Paredes, J., N. Shahidzadeh-Bonn, and D Bonn, 2011, Shear banding in thixotropic and normal emulsions, J. Phys.-Condes. Matter23, 284116.

    Article  CAS  Google Scholar 

  • Potanin, A.A., R. de Rooij, D. van den Ende, and J Mellema, 1995, Microrheological modeling of weakly aggregated dispersions, J. Chem. Phys.102, 5845–5853.

    Article  CAS  Google Scholar 

  • Prasad, V., D Semwogerere, and E.R Weeks, 2007, Confocal microscopy of colloids, J. Phys.-Condes. Matter19, 113102.

    Article  CAS  Google Scholar 

  • Rajaram, B., and A Mohraz, 2010, Microstructural response of dilute colloidal gels to nonlinear shear deformation, Soft Matter6, 2246–2259.

    Article  CAS  Google Scholar 

  • Ramakrishnan, S., V Gopalakrishnan, and C.F Zukoski, 2005, Clustering and mechanics in dense depletion and thermal gels, Langmuir21, 9917–9925.

    Article  CAS  Google Scholar 

  • Royall, C.P., M.E Leunissen, and A. van Blaaderen, 2003, A new colloidal model system to study long-range interactions quantitatively in real space, J. Phys.-Condes. Matter15, S3581-S3596.

    Google Scholar 

  • Shereda, L.T., R.G Larson, and M.J Solomon, 2010, Shear banding in crystallizing colloidal suspensions, Korea-Aust. Rheol. J.22, 309–316.

    Google Scholar 

  • Shih, W.H., W.Y Shih, S.I Kim, J Liu, and I.A Aksay, 1990, Scaling behavior of the elastic properties of colloidal gels, Phys. Rev. A42, 4772–4779.

    Article  CAS  Google Scholar 

  • Studart, A.R., E Amstad, and L.J Gauckler, 2011, Yielding of weakly attractive nanoparticle networks, Soft Matter7, 6408–6412.

    Article  CAS  Google Scholar 

  • Thielicke, W., and E.J Stamhuis, 2014, PIVlab - Towards userfriendly, affordable and accurate digital particle image velocimetry in MATLAB, J. Open Res. Softw.2, e30.

    Article  Google Scholar 

  • Varadan, P., and M.J Solomon, 2001, Shear-induced microstructural evolution of a thermoreversible colloidal gel, Langmuir17, 2918–2929.

    Article  CAS  Google Scholar 

  • Vermant, J., P Moldenaers, S.J Picken, and J Mewis, 1994, A comparison between texture and rheological behaviour of lyotropic liquid crystalline polymers during flow, J. Non-Newton. Fluid Mech.53, 1–23.

    Article  CAS  Google Scholar 

  • Wang, Q., L Wang, M.S Detamore, and C Berkland, 2008, Biodegradable colloidal gels as moldable tissue engineering scaffolds, Adv. Mater.20, 236–239.

    Article  CAS  Google Scholar 

  • Weeks, E.R., and D.A Weitz, 2002, Properties of cage rearrangements observed near the colloidal glass transition, Phys. Rev. Lett.89, 095704.

    Article  CAS  Google Scholar 

  • Winter, P.W., and H Shroff, 2014, Faster fluorescence microscopy: Advances in high speed biological imaging, Curr. Opin. Chem. Biol.20, 46–53.

    Article  CAS  Google Scholar 

  • Wu, Y.L., J.H.J Brand, J.L.A. van Gemert, J Verkerk, H Wisman, A. van Blaaderen, and A Imhof, 2007, A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow, The Rev. Sci. Instrum.78, 103902.

    Article  CAS  Google Scholar 

  • York, A.G., P Chandris, D. Dalle Nogare, J Head, P Wawrzusin, R.S Fischer, A Chitnis, and H Shroff, 2013, Instant super-resolution imaging in live cells and embryos v ia a nalog image processing, Nat. Methods10, 1122–1126.

    Article  CAS  Google Scholar 

  • York, A.G., S.H Parekh, D. Dalle Nogare, R.S Fischer, K Temprine, M Mione, A.B Chitnis, C.A Combs, and H Shroff, 2012, Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy, Nat. Methods9, 749–754.

    Article  CAS  Google Scholar 

  • Zaccone, A., H Wu, and E. Del Gado, 2009, Elasticity of arrested short-ranged attractive colloids: Homogeneous and heterogeneous glasses, Phys. Rev. Lett.103, 208301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Werner Schmidheiny for his work on the design of the rheoconfocal setup. This project has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 731019 (EUSMI), and from the Swiss National Science Foundation, project number 157147.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Vermant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on an invited lecture presented by the corresponding author at the 30th Anniversary Symposium of the Korean Society of Rheology (The 18th International Symposium on Applied Rheology (ISAR)), held on May 21-24, 2019, Seoul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, G., Massaro, R., Coleman, S. et al. Ultrafast imaging of soft materials during shear flow. Korea-Aust. Rheol. J. 31, 229–240 (2019). https://doi.org/10.1007/s13367-019-0023-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0023-4

Keywords

Navigation