Skip to main content
Log in

Cyclotriphosphazene nanofiber-reinforced polybenzoxazine/epoxy nanocomposites for low dielectric and flame-retardant applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, a halogen-free flame-retardant cyclotriphosphazene nanofiber-reinforced polybenzoxazine/epoxy (PBZ/EP/PZT) hybrid nanocomposites have been developed and characterized. Initially, equimolar quantities of benzoxazine and the epoxy matrix is blended and varying weight percentages (0, 0.5, 1.0 and 1.5 wt%) of PZT nanofiber are reinforced to obtain hybrid nanocomposites. It was observed that PBZ/EP/PZT nanocomposites possess higher values of glass transition temperatures (Tg—208 °C) and displayed enhanced thermal stability with high char yields than those of neat matrix. The flammability characteristics of the nanocomposites were studied on the basis of the LOI, UL-94 burning experiments as well as the analysis of residual chars of the tested bars after burning. The V-0 classification for the nanocomposites indicates that the incorporation of PZT nanofiber (1.5 wt%) imparts enhanced flame retardancy to the PBZ/EP matrix. The dielectric properties of these nanocomposites have been studied at 1 MHz over the temperature range between 30 and 200 °C. Data resulted from thermal, flame-retardant and dielectric studies indicate that the composite materials can be considered as the potential candidate for thermally stable fire and heat resistant, dielectric sealants, and encapsulants in electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexander BM, Jeffrey WG (2013) An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater 37:259–279

    Article  CAS  Google Scholar 

  2. Blomqvist P, Rosell L, Simonson M (2004) Emissions from fires part i: fire retarded and non-fire retarded TV-sets. Fire Technol 40:39–58

    Article  Google Scholar 

  3. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  4. Liao SH, Liu PO, Hsiao MC, Teng CC, Wang CA, Ger MD, Chiang CL (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51:4573–4581

    Article  CAS  Google Scholar 

  5. Xiaodong Q, Lei S, Bin Y, Bibo W, Bihe Y, Yongqian S, Yuan H, Richard KKY (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822–6830

    Article  CAS  Google Scholar 

  6. Weil ED, Levchik SV (2004) A Review of current flame retardant systems for epoxy resins. J Fire Sci 22:25–40

    Article  CAS  Google Scholar 

  7. Xin W, Lei S, Hongyu Y, Weiyi X, Baljinder K, Yuan H (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22:22037–22043

    Article  CAS  Google Scholar 

  8. Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: A review. J Ind Eng Chem 29:1–11

    Article  CAS  Google Scholar 

  9. Vidil T, Tournilhac F, Musso S, Robisson A, Leibler L (2016) Control of reactions and network structures of epoxy thermosets. Prog Polym Sci 62:126–179

    Article  CAS  Google Scholar 

  10. Sponton M, Lligadas G, Ronda JC, Galià M, Cádiz V (2009) Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polym Degrad Stab 94:1693–1699

    Article  CAS  Google Scholar 

  11. Artner J, Ciesielski M, Walter O, Doring M, Perez RM, Sandler JKW, Altstädt V, Schartel B (2008) A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems. Macromol Mater Eng 293:503–514

    Article  CAS  Google Scholar 

  12. Hongbo G, Jiang G, Qingliang H, Sruthi T, Zhang X, Yan X, Huang Y, Henry AC, Wei S, Zhanhu G (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52:7718–7728

    Article  CAS  Google Scholar 

  13. Gao M, Wu W, Yan Y (2009) Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim 95:605–608

    Article  CAS  Google Scholar 

  14. Gouri ME, Bachiri AE, Hegazi SE, Rafik M, Harfi AE (2009) Thermal degradation of a reactive flame retardant based on cyclotriphosphazene and its blend with DGEBA epoxy resin. Polym Degrad Stab 94:2101–2106

    Article  CAS  Google Scholar 

  15. Wang X, Zhang Q (2004) Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. Eur Polym J 40:385–395

    Article  CAS  Google Scholar 

  16. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2010) Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 51:2435–2445

    Article  CAS  Google Scholar 

  17. Wang X, Song L, Xing W, Lu H, Hu Y (2011) A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate). Mater Chem Phys 125:536–541

    Article  CAS  Google Scholar 

  18. Wang X, Zhou S, Xing W, Yu B, Feng X, Song L, Hu Y (2013) Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A 1:4383–4390

    Article  CAS  Google Scholar 

  19. Hann JH, Chi YL, Chun SW (2008) Flame retardancy and dielectric properties of dicyclopentadiene-based benzoxazine cured with a phosphorus-containing phenolic resin. J Appl Polym Sci 110:2413–2423

    Article  CAS  Google Scholar 

  20. Takeichi T, Kawauchi T, Agag T (2008) High performance polybenzoxazines as a novel type of phenolic resin. Polym J 40:1121–1131

    Article  CAS  Google Scholar 

  21. Ishida H, Allen DJ (1996) Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci B Polym Phys 34:1019–1030

    Article  CAS  Google Scholar 

  22. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines-New high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344–1391

    Article  CAS  Google Scholar 

  23. Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 36:6010–6017

    Article  CAS  Google Scholar 

  24. Vengatesan MR, Devaraju S, Dinakaran K, Alagar M (2012) SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications. J Mater Chem 22:7559–7566

    Article  CAS  Google Scholar 

  25. Ishida H, Froimowicz P (2017) Advanced and emerging polybenzoxazine science and technology. John Fedor publisher, Elsevier, Washington DC

    Google Scholar 

  26. Allcock HR (2013) Chemistry and applications of polyphosphazenes. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  27. Allen CW (1993) The use of phosphazenes as fire resistant materials. J Fire Sci 11:320–328

    Article  CAS  Google Scholar 

  28. Bai Y, Wang X, Wu D (2012) Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics. Ind Eng Chem Res 51:15064–15074

    Article  CAS  Google Scholar 

  29. Lim H, Chang JY (2010) Thermally stable and flame retardant low dielectric polymers based on cyclotriphosphazenes. J Mater Chem 20:749–754

    Article  CAS  Google Scholar 

  30. Wu X, Zhou Y, Liu SZ, Guo YA, Qiu JJ, Liu CM (2011) Highly branched benzoxazine monomer based on cyclotriphosphazene: synthesis and properties of the monomer and polybenzoxazines. Polymer 52:1004–1012

    Article  CAS  Google Scholar 

  31. Zhao S, He M, Xu J, Ma H (2017) Synthesis of a functionalised phosphazene-containing nanotube/epoxy nanocomposite with enhanced flame retardancy. Micro Nano Lett 12:401–403

    Article  CAS  Google Scholar 

  32. Qiu S, Wang X, Yu B, Feng X, Mu X, Yuen RKK, Hu Y (2017) Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J Hazard Mater 325:327–339

    Article  CAS  PubMed  Google Scholar 

  33. Qu T, Yang N, Houb J, Li G, Yao Y, Zhang Q, He L, Wu D, Qu X (2017) Flame retarding epoxy composites with poly(phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability. RSC Adv 7:6140–6151

    Article  CAS  Google Scholar 

  34. Li S, Qiu S, Yu B, Tang G, Xing W, Hu Y (2016) POSS-functionalized polyphosphazene nanotube: preparation and effective reinforcement on UV-curable epoxy acrylate nanocomposite coatings. RSC Adv 6:3025–3031

    Article  CAS  Google Scholar 

  35. Gu X, Huang X, Wei H, Tang X (2011) Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin. Eur Polym J 47:903–910

    Article  CAS  Google Scholar 

  36. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  37. Espinosa MA, Galia M, Cadiz V (2004) Novel phosphorilated flame retardant thermosets:epoxy–benzoxazine–novolac systems. Polymer 45:6103–6109

    Article  CAS  Google Scholar 

  38. Lin CH, Cai SX, Leu TS, Hwang TY, Lee HH (2006) Synthesis and properties of flame-retardant benzoxazines by three approaches. J Polym Sci A Polym Chem 44:3454–3468

    Article  CAS  Google Scholar 

  39. Zhang W, Li X, Yang R (2011) Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab 96:1821–1832

    Article  CAS  Google Scholar 

  40. Devaraju S, Vengatesan MR, Selvi M, Song JK, Alagar M (2013) Hyper branched polysiloxane-based diglycidyl ether of bisphenol a epoxy composite for low k dielectric application. Polym Comp 34:904–911

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Devaraju or M. Alagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, M., Devaraju, S. & Alagar, M. Cyclotriphosphazene nanofiber-reinforced polybenzoxazine/epoxy nanocomposites for low dielectric and flame-retardant applications. Polym. Bull. 76, 3785–3801 (2019). https://doi.org/10.1007/s00289-018-2569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2569-6

Keywords

Navigation