Skip to main content

Advertisement

Log in

One-pot and two-step method preparation of polyvinyl alcohol/phytic acid polymer sponge under microwave irradiation and physical property study

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A one-pot and two-step process in the case of microwave irradiation was used to fabricate polyvinyl alcohol polymer sponge (PVA polymer sponge) and polyvinyl alcohol/phytic acid polymer sponge (PVA/PA polymer sponge). The characterization of them showed that the ether bonds made linear PVA molecules weave a stacked two-dimensional structure in PVA polymer sponge, and the ether bonds and phosphonate bonds made the linear PVA molecules and cricoid PA molecules weave three-dimensional structure in PVA/PA polymer sponge, which owned the polyporus morphology. The investigations for thermal stability, surface resistivity and self-extinguishing time exhibited that they apart reached 235.5 and 354.8 °C and 5.40 × 109 and 1.63 × 105 Ω/sq and 18.00 and 9.00 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar VP, Babu VS, Yahata K et al (2017) Fe/Cu-mediated one-pot ketone synthesis. Org Lett 19:2766–2769

    Article  CAS  PubMed  Google Scholar 

  2. Cheng K, Kelly AR, Kohn RA et al (2009) One-pot catalytic asymmetric synthesis of pyranones. Org Lett 11:2703–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plattner C, Höfener M, Sewald N (2011) One-pot azidochlorination of glycals. Org lett 13:545–547

    Article  CAS  PubMed  Google Scholar 

  4. Maloney KM, Nwakpuda E, Kuethe JT (2009) One-pot iodination of hydroxypyridines. J Org Chem 74:5111–5114

    Article  CAS  PubMed  Google Scholar 

  5. Morisaki Y, Luu T, Tykwinski RR (2006) A one-pot synthesis and functionalization of polyynes. Org Lett 8:689–692

    Article  CAS  PubMed  Google Scholar 

  6. Kumar A, Yadav RK, Park N et al (2018) Facile one-pot two-step synthesis of novel in situ selenium-doped carbon nitride nanosheet photocatalysts for highly enhanced solar fuel production from CO2. ACS Appl Nano Mater 1:47–54

    Article  CAS  Google Scholar 

  7. Zhang Z, Ollmann IR, Ye X (1999) Programmable one-pot oligosaccharide synthesis. J Am Chem Soc 121:734–753

    Article  CAS  Google Scholar 

  8. Khong S, Kwon O (2012) One-pot phosphine-catalyzed syntheses of quinolines. J Org Chem 77:8257–8267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kulkarni AR, Garai S, Thakur GA (2017) Scalable, one-pot, microwave-accelerated tandem synthesis of unsymmetrical urea derivatives. J Org Chem 82:992–999

    Article  CAS  PubMed  Google Scholar 

  10. Su T, Fang Z (2017) One-pot microwave-assisted hydrolysis of cellulose and hemicellulose in selected tropical plant wastes by NaOH-freeze pretreatment. ACS Sustain Chem Eng 5:5166–5174

    Article  CAS  Google Scholar 

  11. Maleczka RE Jr, Lavis JM (2000) Microwave-assisted one-pot hydrostannylation/stille couplings. Org Lett 2:3655–3658

    Article  CAS  PubMed  Google Scholar 

  12. DiMauro EF, Vitullo JR (2006) Microwave-assisted preparation of fused bicyclic heteroaryl boronates: application in one-pot suzuki couplings. J Org Chem 71:3959–3962

    Article  CAS  PubMed  Google Scholar 

  13. Wu T, Schultz P, Ding S (2003) One-pot two-step microwave-assisted reaction in constructing 4,5-disubstituted pyrazolopyrimidines. Org Lett 5:3587–3590

    Article  CAS  PubMed  Google Scholar 

  14. Ermolat’ev D, Babaev E, Eycken E (2006) Efficient one-pot, two-step, microwave-assisted procedure for the synthesis of polysubstituted 2-aminoimidazoles. Org Lett 8:5781–5784

    Article  CAS  PubMed  Google Scholar 

  15. Kumar A, Yadav R, Park N (2018) Facile one-pot two-step synthesis of novel in situ selenium-doped carbon nitride nanosheet photocatalysts for highly enhanced solar fuel production from CO2. ACS Appl Nano Mater 1:47–54

    Article  CAS  Google Scholar 

  16. He Y, Zhong Y, Peng F (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J Am Chem Soc 133:14192–14195

    Article  CAS  PubMed  Google Scholar 

  17. Ko Y, Tsai C, Wang C (2014) Microwave-assisted one-pot synthesis of 1,6-anhydrosugars and orthogonally protected thioglycosides. J Am Chem Soc 136:14425–14431

    Article  CAS  PubMed  Google Scholar 

  18. Colosi C, Costantini M, Barbetta A et al (2013) Morphological comparison of PVA scaffolds obtained by gasfoaming and microfluidic foaming techniques. Langmuir 29:82–91

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Li Y, Niu S et al (2007) Synthesis of a new “green” sponge via transesterification of dimethyl carbonate with polyvinyl alcohol and foaming approach. J Porous Mater 24:1–10

    Google Scholar 

  20. Pan Y, Shi K, Peng C et al (2014) Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill. ACS Appl Mater Interfaces 6:8651–8659

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Wang M (2016) Removal of heavy metal ions by poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method. ACS Sustain Chem Eng 5:2830–2837

    Article  CAS  Google Scholar 

  22. Barachini S, Danti S, Pacini S et al (2014) Plasticity of human dental pulp stromal cells with bioengineering platforms: a versatile tool for regenerative medicine. Micron 67:155–168

    Article  CAS  PubMed  Google Scholar 

  23. Cheng C, Wang JN, Yang X et al (2014) Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. J Hazard Mater 264:332–341

    Article  CAS  PubMed  Google Scholar 

  24. Pan YX, Liu Z, Wang WC et al (2016) Highly efficient macroporous adsorbents for toxic metal ions in water systems based on polyvinyl alcohol–formaldehyde sponges. J Mater Chem A 4:2537–2549

    Article  CAS  Google Scholar 

  25. Jin Y, Qiao S, Costa J et al (2007) Hydrolytically stable phosphorylated hybrid silicas for proton conduction. Adv Funct Mater 17:3304–3311

    Article  CAS  Google Scholar 

  26. Chen Y, Zhao S, Liu B et al (2014) Corrosion-controlling and osteo-compatible Mg ion-integrated phytic acid (Mg-PA) coating on magnesium substrate for biodegradable implants application. ACS Appl Mater Interfaces 6:19531–19543

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Ding C, Qian X et al (2015) Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant. Carbohydr Polym 115:670–676

    Article  CAS  PubMed  Google Scholar 

  28. Cheng X, Guan J, Tang R et al (2016) Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod 124:114–119

    Article  CAS  Google Scholar 

  29. Carol L, Jord M, Catal R et al (2011) Development of active polyvinyl alcohol/β-cyclodextrin composites to scavenge undesirable food components. J Agric Food Chem 59:11026–11033

    Article  CAS  Google Scholar 

  30. Ma CB, Du BJ, Wang EK (2017) Self-crosslink method for a straightforward synthesis of poly(Vinyl alcohol)-based aerogel assisted by carbon nanotube. Adv Funct Mater 27:1–8

    Google Scholar 

  31. Song X, Chen Y, Rong M et al (2016) A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam. Angew Chem Int Ed 55:3936–3941

    Article  CAS  Google Scholar 

  32. Pupkevich V, Glibin V, Karamanev D (2013) Phosphorylated polyvinyl alcohol membranes for redox Fe3+/H2 flow cells. J Power Sources 228:300–307

    Article  CAS  Google Scholar 

  33. Zhao X, Zhang QH, Chen DJ (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  34. Mallakpour S, Abdolmaleki A, Khalesi Z et al (2015) Surface functionalization of GO, preparation and characterization of PVA/TRIS-GO nanocomposites. Polymer 81:140–150

    Article  CAS  Google Scholar 

  35. Zhang J, Xu W, Zhang Y et al (2018) Liquefied chitin/polyvinyl alcohol based blend membranes: preparation and characterization and antibacterial activity. Carbohydr Polym 180:175–181

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zhao CJ, Ma WJ (2013) Silanecross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells. J Mater Chem A 1:621–629

    Article  CAS  Google Scholar 

  37. Akiyuki H, Kazuhiro S, Joji O et al (2017) Preparation of a one-dimensional soluble polysilsesquioxane containing phosphonic acid side-chain groups and its thermal and proton-conduction properties. Polymer 121:228–233

    Article  CAS  Google Scholar 

  38. Zhen L, He Guangwei, Zhang Bei et al (2014) Enhanced proton conductivity of nafion hybrid membrane under different humidities by incorporating metal-organic frameworks with high phytic acid loading. ACS Appl Mater Interfaces 6:9799–9807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds of Hebei Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Shi, H., Li, Y. et al. One-pot and two-step method preparation of polyvinyl alcohol/phytic acid polymer sponge under microwave irradiation and physical property study. Polym. Bull. 76, 4521–4537 (2019). https://doi.org/10.1007/s00289-018-2571-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2571-z

Keywords

Navigation