Skip to main content
Log in

CoQ10 production in Schizosaccharomyces pombe is increased by reduction of glucose levels or deletion of pka1

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Coenzyme Q (CoQ) is an essential component of the electron transport system that produces ATP in nearly all living cells. CoQ10 is a popular commercial food supplement around the world, and demand for efficient production of this molecule has increased in recent years. In this study, we explored CoQ10 production in the fission yeast Schizosaccharomyces pombe. We found that CoQ10 level was higher in stationary phase than in log phase, and that it increased when the cells were grown in a low concentration of glucose, in maltose, or in glycerol/ethanol medium. Because glucose signaling is mediated by cAMP, we evaluated the involvement of this pathway in CoQ biosynthesis. Loss of Pka1, the catalytic subunit of cAMP-dependent protein kinase, increased production of CoQ10, whereas loss of the regulatory subunit Cgs1 decreased production. Manipulation of other components of the cAMP-signaling pathway affected CoQ10 production in a consistent manner. We also found that glycerol metabolism was controlled by the cAMP/PKA pathway. CoQ10 production by the S. pombepka1 reached 0.98 mg/g dry cell weight in medium containing a non-fermentable carbon source [2% glycerol (w/v) and 1% ethanol (w/v) supplemented with 0.5% casamino acids (w/v)], twofold higher than the production in wild-type cells under normal growth conditions. These findings demonstrate that carbon source, growth phase, and the cAMP-signaling pathway are important factors in CoQ10 production in S. pombe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfa C, Fantes P, Hyams J, McLeod M, Warbrick, E (1993) Experiments with fission yeast: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

  • Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS, Loo JA, Clarke CF (2015) Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J Biol Chem 290:7517–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bimbó A, Jia Y, Poh SL, Karuturi RK, den Elzen N, Peng X, Zheng L, O’Connell M, Liu ET, Balasubramanian MK, Liu J (2005) Systematic deletion analysis of fission yeast protein kinases. Eukaryot Cell 4:799–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL, Widmer C (1957) Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25:220–221

    Article  CAS  PubMed  Google Scholar 

  • DeVoti J, Seydoux G, Beach D, McLeod M (1991) Interaction between ran1 + protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis. EMBO J 10:3759–3768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsburg SL (1993) Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21:2955–2956

  • Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M (2011a) Complex formation, phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe upon glucose starvation. Biosci Biotechnol Biochem 75:1456–1465

    Article  CAS  PubMed  Google Scholar 

  • Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M (2011b) Multistep regulation of protein kinase A in its localization, phosphorylation and binding with a regulatory subunit in fission yeast. Curr Genet 57:353–365

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ogiyama Y, Yokomi K, Nakagawa T, Kaino T, Kawamukai M (2014) Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans. PLoS One 9:e99038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Hoffman CS, Ohta K (2006) Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. Eukaryot Cell 5:1980–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman CS, Winston F (1991) Glucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev 5:561–571

    Article  CAS  PubMed  Google Scholar 

  • Hoffman CS (2005) Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem Soc Trans 33:257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamburger K, Kramhøft B (1982) Respiration and fermentation during growth and starvation in the fission yeast, Schizosaccharomyces pombe. Carlsb Res Commun 47:405–411

    Article  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS (2001) Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics 157:1205–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamukai M, Ferguson K, Wigler M, Young D (1991) Genetic and biochemical analysis of the adenylyl cyclase of Schizosaccharomyces pombe. Cell Regul 2:155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamukai M (2002) Biosynthesis, bioproduction, and novel roles of ubiquinone. J Biosci Bioeng 94:511–517

    Article  CAS  PubMed  Google Scholar 

  • Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts and other organisms. Biotechnol Appl Biochem 53:217–226

    Article  CAS  PubMed  Google Scholar 

  • Kawamukai M (2016) Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem 80:23–33

    Article  CAS  PubMed  Google Scholar 

  • Kawamukai M (2018) Biosynthesis and applications of prenylquinones. Biosci Biotechnol Biochem 82:963–977

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Kira S, Kawamukai M (2013) The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PLoS One 8:e80572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SQ, Tan TS, Kawamukai M, Chen ES (2017) Cellular factories for coenzyme Q10 production. Microb Cell Factories 16:39

    Article  CAS  Google Scholar 

  • Masai H, Miyake T, Arai K (1995) hsk1 +, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J 14:3094–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Watanabe Y, Kunitomo H, Yamamoto M (1994) Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem 269:9632–9637

    CAS  PubMed  Google Scholar 

  • Masuda F, Ishii M, Mori A, Uehara L, Yanagida M, Takeda K, Saitoh S (2016) Glucose restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan. Sci Rep 6:19629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Mcinnis B, Marcus S (2008) Regulation of the subcellular localization of cyclic AMP-dependent protein kinase in response to physiological stresses and sexual differentiation in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 7:1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Kawamukai M (2017) cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 81:231–241

    Article  CAS  PubMed  Google Scholar 

  • Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K (2010) The gld1 + gene encoding glycerol dehydrogenase is required for glycerol metabolism in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 87:715–727

    Article  CAS  PubMed  Google Scholar 

  • Martín-Montalvo A, González-Mariscal I, Padilla S, Ballesteros M, Brautigan DL, Navas P, Santos-Ocaña C (2011) Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p. Biochem J 440:107–114

    Article  CAS  PubMed  Google Scholar 

  • Miki R, Saiki R, Ozoe Y, Kawamukai M (2008) Comparison of a coq7 deletion mutant with other respiration-defective mutants in fission yeast. FEBS J 275:5309–5324

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Moriyama D, Hosono K, Fujii M, Washida M, Nanba H, Kaino T, Kawamukai M (2015) Production of CoQ10 in fission yeast by expression of genes responsible for CoQ10 biosynthesis. Biosci Biotechnol Biochem 79:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Moriyama D, Kaino T, Yajima K, Yanai R, Ikenaka Y, Hasegawa J, Washida M, Nanba H, Kawamukai M (2017) Cloning and characterization of decaprenyl diphosphate synthase from three different fungi. Appl Microbiol Biotechnol 101:1559–1571

    Article  CAS  PubMed  Google Scholar 

  • Morton RA (1958) Ubiquinone. Nature 182:1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely repressed by thiamine. J Biol Chem 265:10857–10864

    CAS  PubMed  Google Scholar 

  • Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T, Nakagawa T, Kawamukai M, Matsuda H (1996) Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochim Biophys Acta 1302:217–223

    Article  PubMed  Google Scholar 

  • Okada K, Kainou T, Matsuda H, Kawamukai M (1998) Biological significance of the side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett 431:241–244

    Article  CAS  PubMed  Google Scholar 

  • Padilla S, Tran UC, Jiménez-Hidalgo M, López-Martín JM, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C (2009) Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis. Cell Mol Life Sci 66:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payet LA, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F (2016) Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chem Biol 23:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Russell P (2016) Growth and the environment of Schizosaccharomyces pombe. Cold Spring Harb Protoc 2016(3):pdb.top079764

    Article  PubMed  PubMed Central  Google Scholar 

  • Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357

    Article  CAS  PubMed  Google Scholar 

  • Saiki R, Nagata A, Uchida N, Kainou T, Matsuda H, Kawamukai M (2003) Fission yeast decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1 protein in a novel heterotetrameric structure. Eur J Biochem 270:4113–4121

    Article  CAS  PubMed  Google Scholar 

  • Saitoh S, Mori A, Uehara L, Masuda F, Soejima S, Yanagida M (2015) Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. Mol Biol Cell 26:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sippel CJ, Goewert RR, Slachman FN, Olson RE (1983) The regulation of ubiquinone-6 biosynthesis by Saccharomyces cerevisiae. J Biol Chem 258:1057–1061

    CAS  PubMed  Google Scholar 

  • Takeda K, Starzynski C, Mori A, Yanagida M (2015) The critical glucose concentration for respiration-independent proliferation of fission yeast, Schizosaccharomyces pombe. Mitochondrion 22:91–95

    Article  CAS  PubMed  Google Scholar 

  • Takenaka K, Tanabe T, Kawamukai M, Matsuo Y (2018) Overexpression of the transcription factor Rst2 in Schizosaccharomyces pombe indicates growth defect, mitotic defects, and microtubule disorder. Biosci Biotechnol Biochem 82:247–257

    Article  CAS  PubMed  Google Scholar 

  • Tran UC, Clarke CF (2007) Endogenous synthesis of coenzyme Q in eukaryotes. Mitochondrion 7(Suppl):S62–S71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida N, Suzuki K, Saiki R, Kainou T, Tanaka K, Matsuda H, Kawamukai M (2000) Phenotypes of fission yeast defective in ubiquinone production due to disruption of the gene for p-hydroxybenzoate polyprenyl diphosphate tranferase. J Bacteriol 182:6933–6939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welton RM, Hoffman CS (2000) Glucose monitoring in fission yeast via the gpa2 Gα, the git5 Gβ and the git3 putative glucose receptor. Genetics 156:513–521

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

S. pombe kinase gene deletion mutants were kindly provided by Dr. M. Balasubramanian. Δpka1 (JZ633) was provided by Dr. M. Yamamoto. The authors also thank Dr. T. Nakagawa, H. Okazaki, and all other members of the laboratory for helpful discussions and support.

Funding

This work was partly supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan [#25660059, #17H03806, and #24380056] to M.K., [#15K07360 and #18K05393] to T.K., [#18K14377] to I.N., [#18K05438] to Y.M., and by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry [#957613] to M.K. The authors thank the faculty of Life and Environmental Sciences in Shimane University for help in financial supports for publishing this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kawamukai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, I., Yokomi, K., Hosono, K. et al. CoQ10 production in Schizosaccharomyces pombe is increased by reduction of glucose levels or deletion of pka1. Appl Microbiol Biotechnol 103, 4899–4915 (2019). https://doi.org/10.1007/s00253-019-09843-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09843-7

Keywords

Navigation