Skip to main content

Advertisement

Log in

Effects of Ce, La, Cu, and Fe promoters on Ni/MgAl2O4 catalysts in steam reforming of propane

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effects of nickel loading and type of promoter on the performance of xNi/MgAl2O4 (x=5, 10, and 15 wt%) and 10Ni-3M/MgAl2O4 (M=Ce, La, Cu, Fe) catalysts, respectively, in steam reforming of propane (SRP) were investigated. The catalyst support (MgAl2O4) was synthesized by co-precipitation method with a MgO/Al2O3 mole ratio of 1.0. The catalysts were then prepared by impregnation of nitrates of nickel and promoters on the support. The catalysts were characterized by the XRD, nitrogen adsorption-desorption, TPR, SEM, EDX mapping, and TGA, and the SRP performance was evaluated in a fixed bed reactor at reaction temperature=500–700 °C, pressure=1 atm, C3H8:N2: steam feed ratio=1:1:3, and GHSV=30,000 ml/(h·gcat) during 420 min time on stream. The results indicated that C3H8 conversion, H2 yield, and catalyst stability varied significantly with nickel loading and type of promoter in the catalyst. The 10Ni/MgAl2O4 catalyst showed highest C3H8 conversion (78%), H2 yield (49%), and stability (96%) as compared to the other unpromoted catalysts due to optimum nickel loading and less carbon deposition. Moreover, cerium promoter remarkably enhanced the performance of 10Ni-3Ce/MgAl2O4 catalyst (C3H8 conversion=93%, H2 yield=60%, and stability= 100%) via more coke gasification in the course of SRP reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. T. Schädel, M. Duisberg and O. Deutschmann, Catal. Today, 142, 42 (2009).

    Article  CAS  Google Scholar 

  2. Y. Jiao, Z. He, J. Wang and Y. Chen, Energy Convers. Manage, 148, 954 (2017).

    Article  CAS  Google Scholar 

  3. M. Peymani, S. M. Alavi and M. Rezaei, Int. J. Hydrogen Energy, 41, 19057 (2016).

    Article  CAS  Google Scholar 

  4. E. L. Guerra, A. M. Shanmugharaj, W. S. Choi and S. H. Ryu, Appl. Catal. A Gen., 468, 467 (2013).

    Article  CAS  Google Scholar 

  5. X. Wang, N. Wang, J. Zhao and L. Wang, Int. J. Hydrogen Energy, 35, 12800 (2010).

    Article  CAS  Google Scholar 

  6. J. D. Holladay, J. Hu, D. L. King and Y. Wang, Catal. Today, 139, 244 (2009).

    Article  CAS  Google Scholar 

  7. S. C. Reyes, J. H. Sinfelt and J. S. Feeley, Ind. Eng. Chem. Res., 42, 1588 (2003).

    Article  CAS  Google Scholar 

  8. S. Natesakhawat, O. Oktar and U. S. Ozkan, J. Mol. Catal. A Chem., 241, 133 (2005).

    Article  CAS  Google Scholar 

  9. N. Laosiripojana and S. Assabumrungrat, J. Power Sources, 158, 1348 (2006).

    Article  CAS  Google Scholar 

  10. M. A. Nieva, M. M. Villaverde, A. Monzón, T. F. Garetto and A. J. Marchi, Chem. Eng. J., 235, 158 (2014).

    Article  CAS  Google Scholar 

  11. K. Y. Koo, S. Lee, U. H. Jung, H.-S. Roh and W. L. Yoon, Fuel Process. Technol., 119, 51 (2014).

    Article  CAS  Google Scholar 

  12. S. Barison, M. Fabrizio, C. Mortaló, P. Antonucci, V. Modafferi and R. Gerbasi, Solid State Ionics, 181, 285 (2010).

    Article  CAS  Google Scholar 

  13. P. K. Cheekatamarla and C. M. Finnerty, J. Power Sources, 160, 490 (2006).

    Article  CAS  Google Scholar 

  14. G. Kolb, R. Zapf, V. Hessel and H. Löwe, Appl. Catal. A Gen., 277, 155 (2004).

    Article  CAS  Google Scholar 

  15. M. C. Sánchez-Sánchez, R. M. Navarro and J. L. G. Fierro, Int. J. Hydrogen Energy, 32, 1462 (2007).

    Article  CAS  Google Scholar 

  16. P. Liang, X. Wang, Y. Zhang, J. Yu and X. Zhang, Energy Fuels, 30, 5115 (2016).

    Article  CAS  Google Scholar 

  17. L. Zhang, X. Wang, B. Tan and U. S. Ozkan, J. Mol. Catal. A Chem., 297, 26 (2009).

    Article  CAS  Google Scholar 

  18. A. R. Aghamiri, S. M. Alavi, A. Bazyari and A. A. Fard, Int. J. Hydrogen Energy, 44, 9307 (2019).

    Article  CAS  Google Scholar 

  19. S. Kang, B. S. Kwak and M. Kang Ceram. Int., 40, 14197 (2014).

    Article  CAS  Google Scholar 

  20. D. L. Trimm and Z. I. Önsan, Catal. Rev., 43, 31 (2001).

    Article  CAS  Google Scholar 

  21. M. Matsuka, K. Shigedomi and T. Ishihara, Int. J. Hydrogen Energy, 39, 14792 (2014).

    Article  CAS  Google Scholar 

  22. H.-J. Lee, Y.-S. Lim, N.-C. Park and Y.-C. Kim, Chem. Eng. J., 146, 295 (2009).

    Article  CAS  Google Scholar 

  23. W. R. Kim, H. G. Ahn, J. S. Shin, Y. C. Kim, D. J. Moon and N. C. Park, J. Nanosci. Nanotechnol, 13, 649 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. K. M. Kim, B. S. Kwak, N.-K. Park, T. J. Lee, S. T. Lee and M. Kang, J. Ind. Eng. Chem., 46, 324 (2017).

    Article  CAS  Google Scholar 

  25. J. E. Park, K. Y. Koo, U. H. Jung, J. H. Lee, H.-S. Roh and W. L. Yoon, Int. J. Hydrogen Energy, 40, 13909 (2015).

    Article  CAS  Google Scholar 

  26. A. Iulianelli, S. Liguori, J. Wilcox and A. Basile, Catal. Rev., 58, 1 (2016).

    Article  CAS  Google Scholar 

  27. A. J. Vizcaíno, A. Carrero and J. A. Calles, Int. J. Hydrogen Energy, 32, 1450 (2007).

    Article  CAS  Google Scholar 

  28. M. Khzouz, E. I. Gkanas, S. Du and J. Wood, Fuel, 232, 672 (2018).

    Article  CAS  Google Scholar 

  29. A. R. Keshavarz and M. Soleimani, Energy Technol., 5, 629 (2017).

    Article  CAS  Google Scholar 

  30. F. Bimbela, J. Ábrego, R. Puerta, L. García and J. Arauzo, Appl. Catal. B Environ., 209, 346 (2017).

    Article  CAS  Google Scholar 

  31. E. Heracleous, A. F. Lee, K. Wilson and A. A. Lemonidou, J. Catal., 231, 159 (2005).

    Article  CAS  Google Scholar 

  32. X. Yang, J. Da, H. Yu and H. Wang, Fuel, 179, 353 (2016).

    Article  CAS  Google Scholar 

  33. T. Borowiecki, W. Gac and A. Denis, Appl. Catal. A Gen., 270, 27 (2004).

    Article  CAS  Google Scholar 

  34. S. Meoto, N. Kent, M. M. Nigra and M.-O. Coppens, Langmuir, 33, 4823 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Z. Zheng, C. Sun, R. Dai, S. Wang, X. Wu, X. An, Z. Wu and X. Xie, Energy Fuels, 31, 3091 (2017).

    Article  CAS  Google Scholar 

  36. S. Das, S. Thakur, A. Bag, M. S. Gupta, P. Mondal and A. Bordoloi, J. Catal., 330, 46 (2015).

    Article  CAS  Google Scholar 

  37. S. Katheria, A. Gupta, G. Deo and D. Kunzru, Int. J. Hydrogen Energy, 41, 14123 (2016).

    Article  CAS  Google Scholar 

  38. K. Y. Koo, H.-S. Roh, U. H. Jung and W. L. Yoon, Catal. Today, 185, 126 (2012).

    Article  CAS  Google Scholar 

  39. M. Taghizadeh, H. Akhoundzadeh, A. Rezayan and M. Sadeghian, Int. J. Hydrogen Energy, 43, 10926 (2018).

    Article  CAS  Google Scholar 

  40. Y. Jiao, J. Zhang, Y. Du, D. Sun, J. Wang, Y. Chen and J. Lu, Int. J. Hydrogen Energy, 41, 10473 (2016).

    Article  CAS  Google Scholar 

  41. R. Kikuchi, M. Yokoyama, S. Tada, A. Takagaki, T. Sugawara and S. T. Oyama, J. Chem. Eng. Japan, 47, 530 (2014).

    Article  CAS  Google Scholar 

  42. S. Natesakhawat, R. B. Watson, X. Wang and U. S. Ozkan, J. Catal., 234, 496 (2005).

    Article  CAS  Google Scholar 

  43. G. Xu, K. Shi, Y. Gao, H. Xu and Y. Wei, J. Mol. Catal. A Chem., 147, 47 (1999).

    Article  CAS  Google Scholar 

  44. C. E. Daza, A. Kiennemann, S. Moreno and R. Molina, Appl. Catal. A Gen., 364, 65 (2009).

    Article  CAS  Google Scholar 

  45. N. Y. Kim, E. H. Yang, S. S. Lim, J. S. Jung, J. S. Lee, G. H. Hong, Y. S. Noh, K. Y. Lee and D. J. Moon, Int. J. Hydrogen Energy, 40, 11848 (2015).

    Article  CAS  Google Scholar 

  46. J. Y. Do, N.-K. Park, T. J. Lee, S. T. Lee and M. Kang, Int. J. Energy Res., 42, 429 (2018).

    Article  CAS  Google Scholar 

  47. D. Baudouin, U. Rodemerck, F. Krumeich, A. de Mallmanna, K. C. Szeto, H. Ménard, L. Veyre, J. P. Candy, P. B. Webb, C. Thieuleux and C. Copéret, J. Catal., 297, 27 (2013).

    Article  CAS  Google Scholar 

  48. K. M. Hardiman, T. T. Ying, A. A. Adesina, E. M. Kennedy and B. Z. Dlugogorski, Chem. Eng. J., 102, 119 (2004).

    Article  CAS  Google Scholar 

  49. M. Al-Haik, J. Dai1, D. Garcia1, J. Chavez, M. Reda Taha, C. Luhrs and J. Phillips, Nanosci. Nanotechnol. Lett., 1, 122 (2009).

    Article  CAS  Google Scholar 

  50. O. Altin and S. Eser, Ind. Eng. Chem. Res., 40, 596 (2001).

    Article  CAS  Google Scholar 

  51. Z. Xiao, L. Li, C. Wu, G. Li, G. Liu and L. Wang, Catal. Lett., 146, 1780 (2016).

    Article  CAS  Google Scholar 

  52. X. Zou, X. Wang, L. Li, K. Shen, X. Lu and W. Ding, Int. J. Hydrogen Energy, 35, 12191 (2010).

    Article  CAS  Google Scholar 

  53. S. M. Sajjadi, M. Haghighi, A. A. Eslami and F. Rahmani, J. Sol-gel Sci. Technol., 67, 601 (2013).

    Article  CAS  Google Scholar 

  54. N. Rahemi, M. Haghighi, A. A. Babaluo, M. F. Jafari and S. Khorram, Int. J. Hydrogen Energy, 38, 16048 (2013).

    Article  CAS  Google Scholar 

  55. A. L. Alberton, M. M. V. M. Souza and M. Schmal, Catal. Today, 123, 257 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Bazyari or Seyed Mehdi Alavi.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvaneh, R., Fard, A.A., Bazyari, A. et al. Effects of Ce, La, Cu, and Fe promoters on Ni/MgAl2O4 catalysts in steam reforming of propane. Korean J. Chem. Eng. 36, 1033–1041 (2019). https://doi.org/10.1007/s11814-019-0295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0295-x

Keywords

Navigation