Skip to main content
Log in

Synthesis and Catalytic Performance of a Dual-Sites Fe–Zn Catalyst Based on Ordered Mesoporous Al2O3 for Isobutane Dehydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ordered mesoporous Zn/OMA-Fe materials were easily prepared via one pot evaporation induced self-assembly (EISA) method in combination with incipient wetness strategy. Dehydrogenation of isobutane to isobutene were carried out on these materials, the isobutane conversion of 50.7% and the yield of 37.8% were obtained over 13Zn/OMA-10Fe catalyst at 580 °C with 300 h−1 GHSV. The synthesized materials with large specific surface areas and uniform pore sizes were characterized by XRD, N2 adsorption–desorption, TEM, XPS, H2-TPR, Mӧssbauer and NH3-TPD. A portion of Fe species were highly dispersed on the support surface and others incorporated into Al2O3 frameworks, Zn species existed in the form of hexagonal ZnO phase. The total acidity of these catalysts was increased by the introduction of Zn, facilitating the conversion of isobutane. Moreover, the conversion of Fe species might play a major role in improving isobutene selectivity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Centeno MA, Debois M, Grange P (2000) J Catal 192:296–306

    Article  CAS  Google Scholar 

  2. Zhu G, Li P, Zhao F, Song H, Xia C (2016) Catal Today 276:105–111

    Article  CAS  Google Scholar 

  3. Bhasin MM, Mccain JH, Vora BV, Imai T, Pujadó PR (2001) Appl Catal A 221:397–419

    Article  CAS  Google Scholar 

  4. Otroshchenko T, Radnik J, Schneider M, Rodemerck U, Linke D, Kondratenko EV (2016) Chem Commun 52:8164–8167

    Article  CAS  Google Scholar 

  5. Tian Y, Liu X, Rood MJ, Yan Z (2017) Appl Catal A 545:1–9

    Article  CAS  Google Scholar 

  6. Dong A, Wang K, Zhu S, Yang G, Wang X (2017) Fuel Process Technol 158:218–225

    Article  CAS  Google Scholar 

  7. Cavani F, Koutyrev M, Trifirò F, Bartolini A, Ghisletti D, Iezzib R, Santuccib A, Pieroc GD (1996) J Catal 158:236–250

    Article  CAS  Google Scholar 

  8. Nawaz Z, Tang X, Zhang Q, Wang D, Fei W (2009) Catal Commun 10:1925–1930

    Article  CAS  Google Scholar 

  9. Siri GJ, Bertolini GR, Casella ML, Ferretti OA (2005) Mater Lett 59:2319–2324

    Article  CAS  Google Scholar 

  10. Tian Y, Liu Y, Liu X, Yan Z (2018) Catal Sci Technol 8:5473–5481

    Article  CAS  Google Scholar 

  11. Wang G, Zhu X, Zhang J, Sun Y, Li C, Shan H (2014) RSC Adv 4:57071–57082

    Article  CAS  Google Scholar 

  12. Michorczyk P, Kustrowski P, Chmielarz L, Ogonowski J (2004) React Kinet Catal Lett 82:121–130

    Article  CAS  Google Scholar 

  13. Sugiyama S, Osaka T, Hirata Y, Kondo Y, Nakagawa K, Sotowa K (2007) J Chem Eng Jpn 40:1064–1071

    Article  CAS  Google Scholar 

  14. Yun JH, Lobo RF (2014) J Catal 312:263–270

    Article  CAS  Google Scholar 

  15. Xu L, Lin X, Xia Y, Lu X, Wang C, Liu C (2014) Mater Res Bull 59:254–260

    Article  CAS  Google Scholar 

  16. Sun Y, Wu Y, Tao L, Shan H, Wang G, Li C (2015) J Mol Catal A 397:120–126

    Article  CAS  Google Scholar 

  17. Hill JM, Cortright RD, Dumesic JA (1998) Appl Catal A 168:9–21

    Article  CAS  Google Scholar 

  18. Zhang S, Zhou Y, Zhang Y, Huang L (2010) Catal Lett 135:76–82

    Article  CAS  Google Scholar 

  19. Aoun M, Chater M, Marecot P, Especel C, Lafaye G (2010) Stud Surf Sci Catal 175:237–240

    Article  CAS  Google Scholar 

  20. Yu C, Xu H, Ge Q, Li W (2007) J Mol Catal A 266:80–87

    Article  CAS  Google Scholar 

  21. Zhang Y, Zhou Y, Huang L, Zhou S, Sheng X, Wang Q, Zhang C (2015) Chem Eng J 270:352–361

    Article  CAS  Google Scholar 

  22. Albero JS, Ruiz JCS, Escribano AS, Reinoso FR (2008) Appl Catal A 351:16–23

    Article  CAS  Google Scholar 

  23. Albero JS, Castillo MAS, He R, Escribano AS, Reinoso FR, Dumesic JA (2001) Catal Lett 74:1–2

    Article  Google Scholar 

  24. Zhao HH, Song HL, Yang J, Zhao J, Yan L, Chou LJ (2017) Catal Sci Technol 15:3256–3267

    Google Scholar 

  25. Cheng M, Zhao HH, Yang J, Zhao J, Yan L, Song HL, Chou LJ (2018) Microporous Mesoporous Mater 266:117–125

    Article  CAS  Google Scholar 

  26. Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210–15216

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Han W, Dong F, Zong L, Tang Z, Zhang J (2017) Microporous Mesoporous Mater 279:1–9

    Article  CAS  Google Scholar 

  28. He Z, Jiao Y, Wang J, Chen Y (2018) Fuel 212:193–201

    Article  CAS  Google Scholar 

  29. Jiao Y, Li S, Liu B, Du Y, Wang J, Lu J (2015) Appl Therm Eng 91:417–425

    Article  CAS  Google Scholar 

  30. H HW, Jeong MH, Koo HM, Chung CH, Bae JW (2015) React Kinet Mech Catal 116:173–189

    Article  CAS  Google Scholar 

  31. Chen J, Cai Z, Chen X, Zheng X, Zheng Y (2016) Mater Lett 168:214–217

    Article  CAS  Google Scholar 

  32. Xiang X, Zhao HH, Yang J, Zhao J, Yan L, Song HL, Chou LJ (2016) Appl Catal A 520:140–150

    Article  CAS  Google Scholar 

  33. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  34. Hawn DD, DeKoven BM (1987) Surf Interface Anal 10:63

    Article  CAS  Google Scholar 

  35. Sun Y, Tao L, You T, Li C, Shan H (2014) Chem Eng J 244:145–151

    Article  CAS  Google Scholar 

  36. Schoen G (1973) J Electron Spectrosc Relat Phenom 75:2

    Google Scholar 

  37. Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T (2002) Phys Chem Chem Phys 4:1990–1999

    Article  CAS  Google Scholar 

  38. Cao J, Wang Y, Yu X, Wang S, Wu S, Yuan Z (2008) Appl Catal B 79:26–34

    Article  CAS  Google Scholar 

  39. Munteanu G, Ilieva L, Andreeva D (1997) Thermochim Acta 291:171

    Article  CAS  Google Scholar 

  40. Wang G, Li C, Shan H (2016) Catal Sci Technol 6:3128–3136

    Article  CAS  Google Scholar 

  41. Liang MS, Kang WK, Xie KC (2009) J Nat Gas Chem 18:110–113

    Article  CAS  Google Scholar 

  42. Dyar MD, Agresti DG, Schaefer MW, Grant CA, Sklute EC (2006) Annu Rev Earth Planet Sci 34:83–125

    Article  CAS  Google Scholar 

  43. Mimura N, Takahara I, Saito M, Sasaki Y, Murata K (2002) Catal Lett 78:1–4

    Article  Google Scholar 

  44. Kang SH, Bae JW, Jun KW, Potdar HS (2008) Catal Commun 9:2035–2039

    Article  CAS  Google Scholar 

  45. Rodemerck U, Kondratenko EV, Otroshchenko T, Linke D (2016) Chem Commun 52:12222–12225

    Article  CAS  Google Scholar 

  46. Liu G, Liu J, He N, Miao C, Wang J, Xin Q, Guo H (2018) RSC Adv 8:18663–18671

    Article  CAS  Google Scholar 

  47. Shi Y, Li X, Rong X, Gu B, Wei H, Sun C (2017) RSC Adv 7:19841–19848

    Article  CAS  Google Scholar 

  48. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:223–232

    Article  CAS  Google Scholar 

  49. Mu J, France LJ, Liu B, Shi J, Long J, Lv L, Li X (2016) Catal Sci Technol 6:8562–8570

    Article  CAS  Google Scholar 

  50. Gu B, He S, Rong X, Shi Y, Sun C (2016) Catal Lett 146:1415–1422

    Article  CAS  Google Scholar 

  51. Xia K, Lang W, Li P, Yan X, Guo Y (2015) RSC Adv 5:64689–64695

    Article  CAS  Google Scholar 

  52. Wang X, Zhang J, Chen J, Ma Q, Fan S, Zhao T (2018) Chin J Chem Eng 26:761–767

    Article  CAS  Google Scholar 

  53. Li Z, Zhang Q, Liu X, Chen M, Wu L, Ai Z (2018) Appl Surf Sci 452:123–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China (No. 21573260 and No. 21403255), Youth Innovation Promotion Association CAS (No. 2017460) and Jiangsu Science and Technology Program (No. BY2016048-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanling Song or Lingjun Chou.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2415 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Zhao, H., Yang, J. et al. Synthesis and Catalytic Performance of a Dual-Sites Fe–Zn Catalyst Based on Ordered Mesoporous Al2O3 for Isobutane Dehydrogenation. Catal Lett 149, 1326–1336 (2019). https://doi.org/10.1007/s10562-019-02686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02686-x

Keywords

Navigation