Skip to main content
Log in

Investigation of Vipera Anatolica Venom Disintegrin via Intracellular Uptake with Radiolabeling Study and Cell-Based Electrochemical Biosensing Assay

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Snake venoms are a natural biological source that has potential therapeutic value with various protein compounds. Disintegrins originally were discovered as a family of proteins from snake venoms composed of cysteine rich low molecular weight polypeptides. Disintegrins exhibit specific binding and higher affinity toward integrin with potential inhibition of function. Trans-membrane receptors of the integrin family may involve in many pathological conditions such as inflammation and tumor progression with important processes related to invasion and migration. Since disintegrins have the ability to bind to integrins, they could be used for cancer detection and treatment, and in monitoring of therapy in select cancer types. The main purpose of the study is to investigate disintegrin containing Vipera anatolica (VAT) crude venom potential for radiolabeling and intracellular uptake as well as electrochemical biosensing assay against U87MG human brain glioblastoma cells. For this purpose, VAT crude venom containing U87MG cell-specific disintegrin was investigated in terms of radiolabeling and intracellular uptake as well as electrochemical biosensing assay in comparison with echistatin (ECT) disintegrin in cells. The interaction between VAT crude venom and ECT with HEK293 human non-tumorigenic embryonic kidney cells and glioblastoma U87MG cells was electrochemically investigated using pencil graphite electrodes (PGEs). The interaction of the VAT crude venom and ECT with HEK293 and U87MG cells was detected according to the changes in oxidation signals. Then, VAT crude venom and echistatin were labeled with 131I via iodogen method. Intracellular uptakes of radiolabeled molecules were investigated in U87MG cell line. 131I-VAT can be an agent for imaging of glioblastoma cancer. Further work will focus on the production of large quantities of pure VAT disintegrin with a biotechnological approach to improving imaging agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VAT:

Vipera anatolica

U87MG:

human brain glioblastoma cells

ECT:

echistatin

HEK293:

human non-tumorigenic embryonic kidney cells

PGEs:

pencil graphite electrodes

ECM:

extracellular matrix

RDG:

Arg-Gly-Asp

ROS:

reactive oxygen species

VEGF:

vascular endothelial growth factor

DPV:

differential pulse voltammetry

TLRC:

thin layer radio chromatography

BCA:

bicinchoninic acid

DMEM/F12:

Dulbecco’s modified Eagle’s medium F12

FBS:

fetal bovine serum

MTT:

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)

OD:

optical density

IC50 :

half maximal inhibition of growth

PBS:

phosphate buffer solution

RIPA:

radio-immunoprecipitation assay

ITLC-cellulose:

cellulose-coated plastic

References

  1. Koh, C. Y., & Kini, R. M. (2012). From snake venom toxins to therapeutics - cardiovascular examples. Toxicon, 59, 497–506.

    Article  CAS  PubMed  Google Scholar 

  2. Knight, L. C., Maurer, A. H., & Romano, J. E. (1996). Comparison of iodine-123-disintegrins for imaging thrombi and emboli in a canine model. Journal of nuclear medicine: official publication. Society of Nuclear Medicine, 37(3), 476–482.

    CAS  Google Scholar 

  3. Calderon, L. A., Sobrinho, J. C., Zaqueo, K. D., de Moura, A. A., Grabner, A. N., Mazzi, M. V., Marcussi, S., Nomizo, A., Fernandes, C. F., Zuliani, J. P., Carvalho, B. M., da Silva, S. L., Stabeli, R. G., Soares, A. M. (2014). Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int, 1–19.

  4. Calvete, J. J., Moreno-Murciano, M. P., Theakston, R. D. G., Kisiel, D. G., & Marcinkiewicz, C. (2003). Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. The Biochemical Journal, 372(3), 725–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takada, Y., Ye, X., & Simon, S. (2007). The integrins. Genome Biology, 8(5), 215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.

    Article  CAS  PubMed  Google Scholar 

  7. Kren, A., Baeriswyl, V., Lehembre, F., Wunderlin, C., Strittmatter, K., Antoniadis, H., Fässler, R., Cavallaro, U., & Christofori, G. (2007). Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. The EMBO Journal, 26(12), 2832–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albelda, S. M. (1993). Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Laboratory Investigation, 68(1), 4–17.

    CAS  PubMed  Google Scholar 

  9. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10(1), 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Senger, D. R., Claffey, K. P., Benes, J. E., Perruzzi, C. A., Sergiou, A. P., & Detmar, M. (1997). Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13612–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senger, D. R., Perruzzi, C. A., Streit, M., Koteliansky, V. E., de Fougerolles, A. R., & Detmar, M. (2002). The α1β1 and α 2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. The American Journal of Pathology, 160(1), 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lucena, S., Sanchez, E. E., & Perez, J. C. (2011). Anti-metastatic activity of the recombinant disintegrin r-mojastin 1, from the Mohave rattlesnake. Toxicon, 57(5), 794–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, J., & Kawde, A. N. (2001). Pencil-based renewable biosensor for label-free electrochemical detection of DNA hybridization. Analytica Chimica Acta, 431(2), 219–224.

    Article  CAS  Google Scholar 

  14. Erdreich-Epstein, A., Shimada, H., Groshen, S., Liu, M., Metelitsa, L. S., Kim, K. S., Stins, M. F., Seeger, R. C., & Durden, D. L. (2000). Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Research, 60(3), 712–721.

    CAS  PubMed  Google Scholar 

  15. Hemminki, A., Belousova, N., Zinn, K. R., Liu, B., Wang, M., Chaudhuri, T. R., Rogers, B. E., Buchsbaum, D. J., Siegal, G. P., Barnes, M. N., Gomez-Navarro, J., Curiel, D. T., & Alvarez, R. D. (2001). An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Molecular Therapy, 4(3), 223–231.

    Article  CAS  PubMed  Google Scholar 

  16. Alavi, A., Hood, J. D., Frausto, R., Stupack, D. G., & Cheresh, D. A. (2003). Role of Raf in vascular protection from distinct apoptotic stimuli. Science, 301(5629), 94–96.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, T., & Holt, J. (1987). Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. The Journal of Biological Chemistry, 262(33), 16157–16163.

    CAS  PubMed  Google Scholar 

  18. Rivas-Mercado, E. A., & Gara-Ocanas, L. (2017). Disintegrins obtained from snake venom and their pharmacological potential. Medicina Universitaria, 19(74), 32–37.

    Article  Google Scholar 

  19. Gomes, A., Bhattacharjee, P., Mishra, R., Biswas, A. K., Dasgupta, S. C., & Giri, B. (2010). Anticancer potential of animal venoms and toxins. Indian Journal of Experimental Biology, 48(2), 93–103.

    CAS  PubMed  Google Scholar 

  20. Vyas, V., Brahmbhatt, K., Bhatt, H., & Parmar, U. (2013). Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pacific Journal of Tropical Biomedicine, 3(2), 156–162.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, Z., Wang, F., & Chen, X. (2008). Integrin αvβ3-targeted cancer therapy. Drug Development Research, 69(6), 329–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar, C. C. (2003). Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Current Drug Targets, 4(2), 123–131.

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, X. D., Jin, Y., Chen, R. Q., Lu, Q. M., Wu, J. B., Wang, W. Y., & Xiong, Y. L. (2004). Purification, cloning and biological characterization of a novel disintegrin from Trimeresurus jerdonii venom. Toxicon, 43(1), 69–75.

    Article  CAS  PubMed  Google Scholar 

  24. Raab-Westphal, S., Marshall, J. F., & Goodman, S. L. (2017). Integrins as therapeutic targets: successes and cancers. Cancers, 9(9), 110.

    Article  CAS  PubMed Central  Google Scholar 

  25. Goçmen, B., Heiss, P., Petras, D., Nalbantsoy, A., & Süssmuth, R. D. (2015). Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica. Toxicon, 107(Pt B), 163–174.

    Article  CAS  PubMed  Google Scholar 

  26. Erdem, A., & Ozsoz, M. (2002). Electrochemical DNA biosensors based on DNA-drug interactions. Electroanalysis, 14(14), 965–974.

    Article  CAS  Google Scholar 

  27. Top, M., Er, O., Congur, G., Erdem, A., & Lambrecht, F. Y. (2016). Intracellular uptake study of radiolabeled anticancer drug and impedimetric detection of its interaction with DNA. Talanta, 160, 157–163.

    Article  CAS  PubMed  Google Scholar 

  28. Fathi, F., Rahbarghazi, R., & Rashidi, M. (2017). Label-free biosensors in the field of stem cell biology. Biosensors & Bioelectronics, 101, 188–198.

    Article  CAS  Google Scholar 

  29. Vanegas, D. C., Gomes, C. L., Cavallaro, N. D., Giraldo-Escobar, D., & McLamore, E. S. (2017). Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Comprehensive Reviews in Food Science and Food Safety, 16(6), 1188–1205.

    Article  CAS  Google Scholar 

  30. Felix, F. S., & Angnes, L. (2017). Electrochemical immunosensors – a powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470–478.

    Article  CAS  PubMed  Google Scholar 

  31. Malekzad, H., Jouyban, A., Hasanzadeh, M., Shadjou, N., & Guardia, M. (2017). Ensuring food safety using aptamer based assays: electroanalytical approach. TrAC Trends in Analytical Chemistry, 94, 77–94.

    Article  CAS  Google Scholar 

  32. Yilmaz, N., Eksin, E., Karacicek, B., Erac, Y., & Erdem, A. (2017). Electrochemical detection of interaction between capsaicin and nucleic acids in comparison to agarose gel electrophoresis. Analytical Biochemistry, 535, 56–62.

    Article  CAS  PubMed  Google Scholar 

  33. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  34. Yalcın, H. T., Ozen, M. O., Gocmen, B., & Nalbantsoy, A. (2014). Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology, 66(1), 87–94.

    Article  CAS  PubMed  Google Scholar 

  35. Karadeniz, H., Armagan, G., Erdem, A., Turunç, E., Çalıskan, A., Kanit, L., & Yalçın, A. (2009). The comparison of electrochemical assay and agarose gel electrophoresis for the determination of DNA damage induced by kainic acid. Electroanalysis, 21, 2468–2476.

    CAS  Google Scholar 

  36. Ersöz, O. A., Soylu, H. M., Er, O., Ocakoglu, K., Lambrecht, F. Y., & Yilmaz, O. (2015). Synthesis, radiolabeling, and bioevaluation of Bis (trifluoromethanesulfonyl) imide. Cancer Biotherapy & Radiopharmaceuticals, 30, 395–399.

    Article  CAS  Google Scholar 

  37. Avşar, G., Sari, F. A., Yuzer, A. C., Soylu, H. M., Er, O., Ince, M., & Lambrecht, F. Y. (2016). Intracellular uptake and fluorescence imaging potential in tumor cell of zinc phthalocyanine. International Journal of Pharmaceutics, 505(1-2), 369–375.

    Article  CAS  PubMed  Google Scholar 

  38. DeLand, F. H., & Shih, W. J. (1984). The status of SPECT in tumor diagnosis. Journal of Nuclear Medicine, 25(12), 1375–1379.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayşe Nalbantsoy, Fatma Yurt or Arzum Erdem.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, O., Eksin, E., Soylu, H.M. et al. Investigation of Vipera Anatolica Venom Disintegrin via Intracellular Uptake with Radiolabeling Study and Cell-Based Electrochemical Biosensing Assay. Appl Biochem Biotechnol 187, 1539–1550 (2019). https://doi.org/10.1007/s12010-018-2872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2872-6

Keywords

Navigation