Skip to main content
Log in

Overexpression of StGA2ox1 Gene Increases the Tolerance to Abiotic Stress in Transgenic Potato (Solanum tuberosum L.) Plants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

It has been known that GA2ox is one kind of key enzyme gene in the gibberellin synthesis pathway, which plays important regulatory roles throughout plant whole growth and development. In this article, one of the GA2ox family genes, designated StGA2ox1, was isolated from potato (Solanum tuberosum L.). The full length of cDNA is 1005 bp, and the cDNA corresponds to a protein of 334 amino acids; this protein was classified in a group with NtGA2ox3 based on multiple sequence alignments and phylogenetic characterization. A plant expression vector pCAEZ1383-StGA2ox1 was established. qRT-PCR showed that the expression of RD28, DREB1, WRKY1, and SnRK2 genes in StGA2ox1 transgenic plant is higher than that in non-transformed control under dehydration, low temperature conditions, and abscisic acid treatments. Overexpression of StGA2ox1 cDNA in transgenic potato plants exhibited an improved salt, drought, exogenous hormone, and low temperature stress tolerance in comparison to the non-transformed plant. The enhanced stress tolerance may be associated with the subsequent accumulation of proline osmoprotectant in addition to a better control of chlorophyll, carotenoids, and water loss. These data suggest that the StGA2ox1 is involved in the regulation of plant growth and tolerance in potato by regulating the synthesis of gibberellin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang, J., Tang, D., Shen, Y., Qin, B., Hong, L., You, A., Li, M., Wang, X., Yu, H., & Gu, M. (2010). Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). Journal of Genetics and Genomics, 37(1), 23–36.

    Article  CAS  Google Scholar 

  2. Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G. K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., & Matsuoka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 134(4), 1642–1653.

    Article  CAS  Google Scholar 

  3. Ellen, H. C., Stephen, G., Andrew, L. P., & Peter, H. (2014). The role of gibberellin signaling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67–75.

    Article  Google Scholar 

  4. Olszewski, N., Sun, T.-p., & Gubler, F. (2002). Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell, 14, 61–80.

    Article  Google Scholar 

  5. Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59(1), 225–251.

    Article  CAS  Google Scholar 

  6. Otani, M., Meguro, S., Gondaira, H., Hayashi, M., Saito, M., Han, D. S., Inthima, P., Supaibulwatana, K., Mori, S., Jikumaru, Y., Kamiya, Y., Li, T., Niki, T., Nishijima, T., Koshioka, M., & Nakano, M. (2013). Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. Journal of Plant Physiology, 170(16), 1416–1423.

    Article  CAS  Google Scholar 

  7. Thomas, S. G., Phillips, A. L., & Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4698–4703.

    Article  CAS  Google Scholar 

  8. Martin, D., Proebsting, W., & Hedden, P. (1999). The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiology, 121(3), 775–781.

    Article  CAS  Google Scholar 

  9. Busov, V. B., Meilan, R., Pearce, D. W., Ma, C., Rood, S. B., & Strauss, S. H. (2003). Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiology, 132(3), 1283–1291.

    Article  CAS  Google Scholar 

  10. Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D., & Amasino, R. M. (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell, 15(1), 151–163.

    Article  CAS  Google Scholar 

  11. Lee, D. J., & Zeevaart, J. A. D. (2005). Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiology, 138, 243–254.

    Article  CAS  Google Scholar 

  12. Dijkstra, C., Adams, E., Bhattacharya, A., Page, A. F., Anthony, P., Kourmpetli, S., Power, J. B., Lowe, K. C., Thomas, S. G., Hedden, P., Phillips, A. L., & Davey, M. R. (2008). Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Reports, 27(3), 463–470.

    Article  CAS  Google Scholar 

  13. Zhou, B., Peng, D., Lin, J., Huang, X., Peng, W., He, R., Guo, M., Tang, D., Zhao, X., & Liu, X. (2011). Heterologous expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana enhanced the photosynthesis capacity in Brassica napus L. Journal of Plant Biology, 54(1), 23–32.

    Article  CAS  Google Scholar 

  14. Chen, W. J., & Zhu, T. (2004). Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 9(12), 591–596.

    Article  CAS  Google Scholar 

  15. Lee, H., Xiong, L., Ishitani, M., Stevenson, B., & Zhu, J. K. (1999). Cold regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant Journal, 17(3), 301–308.

    Article  CAS  Google Scholar 

  16. Ramanjulu, S., & Bartels, D. (2002). Drought and desiccation induced modulation of gene expression in plants. Plant, Cell and Environment, 25(2), 141–151.

    Article  CAS  Google Scholar 

  17. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57(1), 781–803.

    Article  CAS  Google Scholar 

  18. Yang, D. L., Li, Q., Deng, Y. W., Lou, Y. G., Wang, M. Y., Zhou, G. X., Zhang, Y. Y., & He, Z. H. (2008). Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Molecular Plant, 1(3), 528–537.

    Article  CAS  Google Scholar 

  19. Achard, P., Cheng, H., De Grauwe, L., et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91–94.

    Article  CAS  Google Scholar 

  20. Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and human health. Critical Reviews in Food Science and Nutrition, 49(10), 823–840.

    Article  CAS  Google Scholar 

  21. Bouaziz, D., Pirrello, J., Charfeddine, M., Hammami, A., Jbir, R., Dhieb, A., Bouzayen, M., & Gargouri-Bouzid, R. (2013). Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Molecular Biotechnology, 54(3), 803–817.

    Article  CAS  Google Scholar 

  22. Tan, B., Li, D. L., Xu, S. X., Fan, G. E., Fan, J., & Guo, W. W. (2009). Highly efficient transformation of GFP and KUN genes into precocious trifoliate orange (Poncirus trifoliata L. Raf), a potential model genopype for functional genomics studies in Citrus. Tree Genetics & Genomes, 5(3), 529–537.

    Article  Google Scholar 

  23. Leung, J., Merlot, S., Giraudat, J., et al. (1997). The Arabidopsis ABSCISIC ACIDINSENSITIVE2(ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5), 759–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shin, D., Moon, S.-J., Han, S., Kim, B.-G., Park, S. R., Lee, S.-K., Yoon, H.-J., Lee, H. E., Kwon, H.-B., Baek, D., Yi, B. Y., & Byun, M.-O. (2011). Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology, 155(1), 421–432.

    Article  CAS  Google Scholar 

  25. Kim, Y., Yang, K. S., Sun, H. R., et al. (2007). Molecular characterization of a cDNA encoding DREB-binding transcription factor from dehydration treated fibrous roots of sweet potato. Plant Physiology and Biochemistry, 46, 196–204.

    Article  Google Scholar 

  26. Moon, S. J., Han, S. Y., Byun, M. O., et al. (2014). Ectopic expression of CaWRKY1, a pepper transcription factor, enhances drought tolerance in transgenic potato plants. Journal of Plant Biology, 57(3), 198–207.

    Article  CAS  Google Scholar 

  27. Liang, Y., Ji, W., Gao, P., et al. (2012). GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One, 7, 1–11.

    Google Scholar 

  28. Huang, S. S., Raman, A. S., Ream, J. E., Fujiwara, H., Cerny, R. E., & Brown, S. M. (1998). Overexpression of GA20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiology, 118(3), 773–781.

    Article  CAS  Google Scholar 

  29. Xu, Y. L., Li, L., Gage, D. A., & Zeevaart, J. A. D. (1999). Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell, 11(5), 927–935.

    Article  CAS  Google Scholar 

  30. Eriksson, M. E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18(7), 784–788.

    Article  CAS  Google Scholar 

  31. Vidal, A. M., Ben-Cheikh, W., Talón, M., & García-Martínez, J. L. (2003). Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta, 217(3), 442–448.

    Article  CAS  Google Scholar 

  32. Krugman, T., Peleg, Z., Quansah, L., Chagué, V., Korol, A. B., Nevo, E., Saranga, Y., Fait, A., Chalhoub, B., & Fahima, T. (2011). Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11(4), 565–583.

    Article  CAS  Google Scholar 

  33. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473–497.

    Article  CAS  Google Scholar 

  34. Michener, C. D., & Sokal, R. R. (1957). A quantitative approach to a problem of classification. Evolution, 11, 490–499.

    Article  Google Scholar 

  35. Bouaziz, D., Ayadi, M., Bidani, A., Rouis, S., Nouri-Ellouz, O., Jellouli, R., Drira, N., & Gargouri-Bouzid, R. (2009). A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Science, 176(4), 489–496.

    Article  CAS  Google Scholar 

  36. Dellaporta, S. L., Woods, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  37. Bézier, A., Lambert, B., & Baillieul, F. (2002). Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108(2), 111–120.

    Article  Google Scholar 

  38. Thomas, C., Meyer, D., & Wolff, M. (2003). Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Molecular Biology, 52(5), 1025–1036.

    Article  CAS  Google Scholar 

  39. Gao, Z.-H., Wei, J.-H., Yang, Y., Zhang, Z., & Zhao, W.-T. (2012). Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis. Plant Cell Reports, 31(9), 1759–1768.

    Article  CAS  Google Scholar 

  40. Roberto, D., & Kenneth, C. H. (2011). Actin structure and function. Annual Review of Biophysics, 40, 169–186.

    Article  Google Scholar 

  41. Arnon, D. L. (1949). A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaries. Plant Physiology, 24(1), 1–15.

    Article  CAS  Google Scholar 

  42. Bates, L. E., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  43. Yamasaki, S., & Dillenburg, L. C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11, 69–75.

    Google Scholar 

Download references

Funding

This work was supported by the fund of basic research project of Qinghai province (2013-Z-720), basal research fund of central public-interest scientific institution (161016201707), National key laboratory of cotton biology (CB2017C14), and cotton industry technology system of Henan province (S2013-07-G01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gentu Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wang, J., Wang, N. et al. Overexpression of StGA2ox1 Gene Increases the Tolerance to Abiotic Stress in Transgenic Potato (Solanum tuberosum L.) Plants. Appl Biochem Biotechnol 187, 1204–1219 (2019). https://doi.org/10.1007/s12010-018-2848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2848-6

Keywords

Navigation