Skip to main content

Advertisement

Log in

Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Treatments of skin injuries caused by trauma and diseases are among the most considerable medical problems. The use of scaffolds that can cover the wound area and support cellular ingrowth has shown great promise. However, mimicking the physicochemical properties of the native skin extracellular matrix (ECM) is essential for the successful integration of these scaffolds. Elastin has been known as the second main protein-based component of the native skin ECM. In this research, scaffolds containing gelatin, cellulose acetate, and elastin were fabricated using electrospinning. Subsequently, the effects of soluble elastin on the physical, mechanical, and biological properties of the prepared scaffolds were studied. The results confirmed that the presence of elastin in the composition changed the fiber morphology from straight to ribbon-like structure and decreased the swelling ratio and degradation rate of the scaffold. In vitro experiments showed that elastin-containing scaffolds supported the attachment and proliferation of fibroblast cells. Overall, the obtained results suggest the ternary blend of gelatin, cellulose acetate, and elastin as a good candidate for skin tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thomas, R., Soumya, K. R., Mathew, J., & Radhakrishnan, E. K. (2015). Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied Biochemistry and Biotechnology, 176(8), 2213–2224.

    Article  CAS  PubMed  Google Scholar 

  2. El-Aassar, M. R. E. f., El-Deeb, G. F., Shokry Hassan, N. M., & Mo, H. (2016). X. Applied Biochemistry and Biotechnology, 178(8), 1488–1502.

    Article  CAS  PubMed  Google Scholar 

  3. Groeber, F., Holeiter, M., Hampel, M., Hinderer, S., & Schenke-Layland, K. (2011). Advanced Drug Delivery Reviews, 128, 352–366.

    Article  CAS  Google Scholar 

  4. Khalili, S. N. K., Razavi, S., Hashemi Beni, M., Heydari, B., & Tamayol, F. A. (2018). Journal of Biomedical Materials Research. Part A, 106(2), 370–376.

    Article  CAS  PubMed  Google Scholar 

  5. Khalili, S., Nouri Khorasani, S., Saadatkish, N., & Khoshakhlagh, K. (2016). Polymer Science Series A, 58(3), 399–408.

    Article  CAS  Google Scholar 

  6. Annabi, N., Mithieux, S. M., Camci-Unal, G., Dokmeci, M. R., Weiss, A. S., & Khademhosseini, A. (2013). Elastomeric recombinant protein-based biomaterials. Biochemical Engineering Journal, 77, 110–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hong, Y., Zhu, X., Wang, P., Fu, H., Deng, C., Cui, L., Wang, Q., & Fan, X. (2016). Tyrosinase-mediated construction of a silk fibroin/elastin nanofiber bioscaffold. Applied Biochemistry and Biotechnology, 178(7), 1363–1376.

    Article  CAS  PubMed  Google Scholar 

  8. Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews, 59(4-5), 207–233.

    Article  CAS  PubMed  Google Scholar 

  9. Bagherifard, S., Tamayol, A., Mostafalu, P., Akbari, M., Comotto, M., Annabi, N., Ghaderi, M., Sonkusale, S., Dokmeci, M. R., & Khademhosseini, A. (2016). Dermal patch with integrated flexible heater for on demand drug delivery. Advanced Healthcare Materials, 5(1), 175–184.

    Article  CAS  PubMed  Google Scholar 

  10. Najafabadi, A. H., Abdouss, M., & Faghihi, S. (2014). Journal of Nanoparticle Research, 16, 1–14.

    Article  CAS  Google Scholar 

  11. Balakrishnan, B., Mohanty, M., Fernandez, A. C., Mohanan, P. V., & Jayakrishnan, A. (2006). Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 27(8), 1355–1361.

    Article  CAS  PubMed  Google Scholar 

  12. Cahú, T. B., Silva, R. A., Silva, R. P. F., Silva, M. M., Arruda, I. R. S., & Silva, J. F. (2017). Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZnO for wound healing. Applied Biochemistry and Biotechnology, 183(3), 765–777.

    Article  CAS  PubMed  Google Scholar 

  13. Khan, F., & Ahmad, S. R. (2013). Polysaccharides and their derivatives for versatile tissue engineering application. Macromolecular Bioscience, 13(4), 395–421.

    Article  CAS  PubMed  Google Scholar 

  14. Bačáková, L., Novotná, K., & Pařízek, M. (2014). Physiological Research, 63, S29–S47.

    PubMed  Google Scholar 

  15. Kharaziha, M., Nikkhah, M., Shin, S. R., Annabi, N., Masoumi, N., Gaharwar, A. K., Camci-Unal, G., & Khademhosseini, A. (2013). PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 34(27), 6355–6366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venugopal, J., & Ramakrishna, S. (2005). Applications of polymer nanofibers in biomedicine and biotechnology. Applied Biochemistry and Biotechnology, 125(3), 147–158.

    Article  CAS  PubMed  Google Scholar 

  17. Neisiany, R. E., Khorasani, S. N., Naeimirad, M., Lee, J. K. Y., & Ramakrishna, S. (2017). Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers. Macromol. Materials Engineering, 302, 551.

  18. Neisiany, R. E., Khorasani, S. N., Lee, J. K. Y., Naeimirad, M., & Ramakrishna, S. (2018). Interfacial toughening of carbon/epoxy composite by incorporating styrene acrylonitrile nanofibers. Theoretical and Applied Fracture Mechanics, 95, 242–247.

    Article  CAS  Google Scholar 

  19. Rnjak-Kovacina, J., Li, S. W. Z., Maitz, P. K. M., Young, C. J., Wang, Y., & Weiss, A. S. (2011). Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 32(28), 6729–6736.

    Article  CAS  PubMed  Google Scholar 

  20. Rnjak-Kovacina, J., & Weiss, A. S. (2011). Increasing the pore size of electrospun scaffolds. Tissue Engineering. Part B, Reviews, 17(5), 365–372.

    Article  CAS  PubMed  Google Scholar 

  21. Vallejos, M. E., Peresin, M. S., & Rojas, O. J. (2012). All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. Journal of Polymers and the Environment, 20(4), 1075–1083.

    Article  CAS  Google Scholar 

  22. Nguyen, T. H., & Lee, B. T. (2010). Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers. Journal of Biomedical Science and Engineering, 3(12), 1117–1124.

    Article  CAS  Google Scholar 

  23. Vatankhah, E., Prabhakaran, M. P., Jin, G., Ghasemi Mobarakeh, L., & Ramakrishna, S. (2013). Journal of Biomaterials Applications, 28, 909–921.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H. M., Chou, Y. T., Wen, Z. H., Wang, Z. R., Chen, C. H., & Ho, M. L. (2013). PLoS One, 8, 56330.

    Article  CAS  Google Scholar 

  25. Mohammadzadehmoghadam, S., Dong, Y., & Davies, I. J. (2016). Modeling electrospun nanofibers: an overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(17), 901–915.

    Article  CAS  Google Scholar 

  26. Wilkes, G. L., Brown, I. A., & Wildnauer, R. H. (1973). The biomechanical properties of skin. Critical Reviews in Bioengineering, 4, 453–495.

    Google Scholar 

  27. Nivison-Smith, L., Rnjak, J., & Weiss, A. S. (2010). Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia, 6(2), 354–359.

    Article  CAS  PubMed  Google Scholar 

  28. Grover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74.

    Article  CAS  PubMed  Google Scholar 

  29. Vaquette, C., & Cooper-White, J. J. (2011). Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomaterialia, 7(6), 2544–2557.

    Article  CAS  PubMed  Google Scholar 

  30. Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii Alergologii, 30(5), 302–306.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Research Institute in Biotechnology and Bioengineering at Isfahan University of Technology and Dental Sciences Research Center at Isfahan University of Medical Sciences.

Funding

This project received financial support from Bonyad Melli Nokhbegan (BMN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Nouri Khorasani.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, S., Khorasani, S.N., Razavi, S.M. et al. Nanofibrous Scaffolds with Biomimetic Composition for Skin Regeneration. Appl Biochem Biotechnol 187, 1193–1203 (2019). https://doi.org/10.1007/s12010-018-2871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2871-7

Keywords

Navigation