Skip to main content
Log in

Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Carbohydrate-binding modules (CBMs) have been developed to investigate the presence of crystalline and amorphous regions of cellulose. However, systematic and quantitative assessment of cellulose crystallinity using such non-hydrolytic fusion proteins in liquid phase has not been reported. In this work, cellulose directed CBM probes containing a green fluorescent protein (GFP) were constructed and named CG17, CG28, and CG2a. The probe binding condition was determined as incubating 30 μg/mL probes in 10 mM phosphate buffer at 30 oC for 60 min. Under the optimized condition, the linear correlations between CBM probe binding capability and X-ray diffraction (XRD) crystallinity were well established. Using linear regression equations, the crystallinity of several cellulosic materials was well calculated. Amorphous component and cellulosic surface area probably had a less effect on binding capability of CG2a than that of CG17 and CG28. Therefore, crystalline-region specific probe CG2a should be an efficient tool for interpreting the crystallinity of cellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bhalla, N. Bansal, S. Kumar, K. M. Bischoff, and R. K. Sani, Bioresour. Technol., 128, 751 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Z. Ling, S. Chen, X. Zhang, and F. Xu, Bioresour. Technol., 224, 611 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. L. R. Lynd, P. J. Weimer, W. H. Zyl, and I. S. Pretorius, Microbiol. Mol. Biol. Rev., 66, 506 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. H. P. Zhang, Energy Sci. Eng., 1, 25 (2013).

    Article  CAS  Google Scholar 

  5. M. Hall, P. Bansal, J. H. Lee, M. J. Realff, and A. S. Bommarius, FEBS J., 277, 1571 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. P. Bansal, M. Hall, M. J. Realff, J. H. Lee, and A. S. Bommarius, Bioresour. Technol., 101, 4461 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. W. G. Hu and K. Schmidt-Rohr, Polymer, 41, 2979 (2000).

    Article  CAS  Google Scholar 

  8. M. K. D. Rambo and M. M. C. Ferreira, J. Braz. Chem. Soc., 26, 612 (2015).

    Google Scholar 

  9. J. F. Kennedy and R. J. S. Pons, Carbohyd. Polym., 26, 313 (1995).

    Google Scholar 

  10. L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, Cellulose, 22, 1469 (2015).

    Article  CAS  Google Scholar 

  11. K. Schenzel, S. Fischer, and E. Brendler, Cellulose, 12, 223 (2005).

    Article  CAS  Google Scholar 

  12. N. K. Zerhusen, B. C. Tubilla, and D. B. Wilson, Cellulose, 25, 4 (2017).

    Google Scholar 

  13. C. M. Lee, X. Chen, P. A. Weiss, L. Jensen, and S. H. Kim, J. Phys. Chem. Lett., 8, 1 (2017).

    Article  CAS  Google Scholar 

  14. P. Ahvenainen, I. Kontro, and K. Svedström, Cellulose, 23, 2 (2016).

    Article  CAS  Google Scholar 

  15. Í. P. Caliari, M. H. Barbosa, S. O. Ferreira, and R. F. Teófilo, Carbohydr. Polym., 158 (2017).

  16. N. Sathitsuksanoh, Z. Zhu, S. Wi, and Y. H. Zhang, Biotechnol. Bioeng., 108, 521 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Q. Q. Wang, Z. He, Z. Zhu, Y. H. P. Zhang, Y. Ni, X. L. Luo, and J. Y. Zhu, Biotechnol. Bioeng., 109, 381 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. T. Q. Li, Appl. Spectrosc. Rev., 50, 1512 (1996).

    Article  CAS  Google Scholar 

  19. S. H. Gao, C. You, S. Renneckar, B. Jie, and Y. H. P. Zhang, Biotechnol. Biofuels., 7, 24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Araki, S. Karita, A. Tanaka, M. Kondo, and M. Goto, Biotechnol. Biochem., 73, 1028 (2009).

    Article  CAS  Google Scholar 

  21. A. B. Boraston, D. N. Bolam, H. J. Gilbert, and G. J. Davies, Biochem. J., 382, 769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Hashimoto, Cell. Mol. Life Sci., 63, 2954 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. B. W. McLean, A. B. Boraston, D. Brouwer, N. Sanaie, C. A. Fyfe, R. A. Warren, D. G. Kilburn, and C. A. Haynes, J. Biol. Chem., 277, 50245 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. L. Mccartney, A. W. Blake, J. Flint, D. N. Bolam, A. B. Boraston, H. J. Gilbert, and J. P. Knox, Proc. Natl. Acad. Sci. U.S.A., 103, 4765 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. S. Bommarius, A. Katona, S. E. Cheben, A. S. Patel, A. J. Ragauskas, K. Knudson, and Y. Pu, Metab. Eng., 10, 370 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. B. A. Hook, J. Halfar, J. Bollmann, Z. Gedalof, M. A. Rahman, J. Reyes, and D. J. Schulze, Chem. Geol., 405, 19 (2015).

    Article  CAS  Google Scholar 

  27. C. Lee, K. Dazen, K. Kafle, A. Moore, D. K. Johnson, S. Park, and S. H. Kim, in Polymer Science, O. Rojas, Ed., Springer Cham Press, Switzerland, 2015, Vol. 271, pp 115–131.

    Article  CAS  Google Scholar 

  28. Y. H. P. Zhang, J. Cui, L. R. Lynd, and L. R. Kuang, Biomacromolecules, 7, 644 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. J. Schoeck, R. J. Davies, A. Martel, and C. Riekel, Biomacromolecules, 8, 602 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. M. Wada, M. Ike, and K. Tokuyasu, Polym. Degrad. Stab., 95, 543 (2010).

    Article  CAS  Google Scholar 

  31. M. Ago, T. Endo, and T. Hirotsu, Cellulose, 11, 163 (2004).

    Article  CAS  Google Scholar 

  32. H. Xu, G. Yu, X. Mu, C. Zhang, P. Deroussel, C. Liu, B. Li, and H. Wang, Ind. Crop. Prod., 76, 638 (2015).

    Article  CAS  Google Scholar 

  33. V. Reyesortiz, R. A. Heins, G. Cheng, E. Y. Kim, B. C. Vernon, R. B. Elandt, P. D. Adams, K. L. Sale, M. Z. Hadi, and B. A. Simmons, Biotechnol. Biofuels, 6, 93 (2013).

    Article  CAS  Google Scholar 

  34. F. van den Ent and J. Löwe, Polym. Degrad. Stab., 67, 67 (2006).

    CAS  Google Scholar 

  35. J. Crowe, H. Dobeli, R. Gentz, E. Hochuli, D. Stiiber, and K. Henco, Methods Mol. Biol., 31, 371 (1994).

    CAS  PubMed  Google Scholar 

  36. L. C. Segal, J. Creely, A. E. J. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  37. T. Kawakubo, S. Karita, Y. Araki, S. Watanabe, M. Oyadomari, R. Takada, F. Tanaka, K. Abe, T. Watanabe, and Y. Honda, Biotechnol. Bioeng., 105, 499 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. J. A. Walker, T. E. Takasuka, K. Deng, C. M. Bianchetti, H. S. Udell, B. M. Prom, H. Kim, P. D. Adams, T. R. Northen, and B. G. Fox, Biotechnol. Biofuels, 8, 220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Kljun, T. A. S. Benians, F. Goubet, F. Meulewaeter, J. P. Knox, and R. S. Blackburn, Biomacromolecules, 12, 4121 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. J. Hong, A. Xinhao Ye, and Y. H. P. Zhang, Langmuir, 23, 12535 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. J. A. Rollin, Z. Zhu, N. Sathitsuksanoh, and Y. H. Zhang, Biotechnol. Bioeng., 108, 22 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. H. Liao, X. Z. Zhang, J. A. Rollin, and Y. H. Zhang, Biotechnol. J., 6, 1409 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. A. Mittal, K. Rui, M. E. Himmel, and D. K. Johnson, Biotechnol. Biofuels, 4, 41 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. D. Mansfield, C. Mooney, and J. N. Saddler, Biotechnol. Prog., 15, 804 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. S. Mcintosh and T. Vancov, Biomass Bioenergy, 35, 3094 (2011).

    Article  CAS  Google Scholar 

  46. S. Ye and J. Cheng, Bioresour. Technol., 83, 1 (2002).

    Article  Google Scholar 

  47. S. Y. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, Eng. Chem. Res., 48, 3713 (2009).

    Article  CAS  Google Scholar 

  49. G. Antonopoulou, G. Dimitrellos, A. S. Beobide, D. Vayenas, and G. Lyberatos, Waste Biomass Valorization, 6, 733 (2015).

    Article  CAS  Google Scholar 

  50. J. E. Stone, Adv. Chem., 15, 219 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhen Li.

Additional information

Acknowledgments: This work was supported by Natural and Scientific Funding of China (31671796, 31600640, and 31771907), Education Department of Liaoning (201601272), Program for Liaoning Innovative Research Team in University, Program for Liaoning Excellent Talents in University (LJQ2015009), Science and technology Department of Liaoning (201602059, 201601273) are greatly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yang, F., Liu, H. et al. Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe. Macromol. Res. 27, 377–385 (2019). https://doi.org/10.1007/s13233-019-7059-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7059-7

Keywords

Navigation