Skip to main content
Log in

Effect of the Reaction Temperature on the Removal of Diesel Particulate Matter by Ozone Injection

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study seeks to investigate the removal efficiency of particulate matter (PM) from the actual diesel exhaust at various reaction temperatures by using non-thermal plasma (NTP). The effect of the reaction temperature on removal efficiency was reflected by the change in the concentration of particles in different modes and the weight fraction of volatile organics in PM. The Arrhenius equation was used to determine the apparent activation energies Ea of the soot in PM. In addition, the difference in the oxidation reaction at various reaction temperatures and the effect of NTP on the properties of PM were discussed. After considering the decreasing ranges of the total concentration and the weight of the PM, it was determined that 120 °C is the optimal temperature choice for PM removal. The decreasing range of the total concentration reached 57.13% and 66.79% of PM was removed when the PM is measured by weight. NTP has better effect on the removal of smaller particles. The weight fraction of the volatile fraction markedly decreases after the reaction and the apparent activation energy of soot noticeably decreased. The oxidizability of the excited species in NTP was enhanced with the increase of the reaction temperature. However, the excited species concentration declined concurrently, resulting in the occurrence of the optimized range of reaction temperature. The particles were removed by the oxidation that occurred on the surface of the primary particle and the disintegration of the structure of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babaie M, Davari P, Zare F, Rahman MM, Rahimzadeh H, Ristovski Z et al (2013) Effect of pulsed power on particle matter in diesel engine exhausting a DBD plasma reactor. IEEE Trans Plasma Sci 41(8):2349–2358

    Article  CAS  Google Scholar 

  2. Bensaid S, Marchisio DL, Fino D (2010) Numerical simulation of soot filtration and combustion within diesel particulate filters. Chem Eng Sci 65(1):357–363

    Article  CAS  Google Scholar 

  3. Sun Y, Bochmann F, Nold A, Mattenklott M (2014) Diesel exhaust exposure and the risk of lung cancer—a review of the epidemiological evidence. Int J Environ Res Pub Health 11(2):1312–1340

    Article  Google Scholar 

  4. Mohankumara S, Senthilkumarb P (2017) Particulate matter formation and its control methodologies for diesel engine: a comprehensive review. Renew Sustain Energy Rev 80:1227–1238

    Article  CAS  Google Scholar 

  5. Mei C, Mei D, Chen Z, Yuan Y (2017) Characteristics of diesel particulates based on fractal theory and carbon analysis. Trans CSICE 35(2):131–135

    Google Scholar 

  6. Mokhri MA, Abdullah NR, Abdullah SA, Kasalong S, Mamat R (2012) Soot filtration recent simulation analysis in diesel particulate filter (DPF). Procedia Eng 41:1750–1755

    Article  CAS  Google Scholar 

  7. Palma V, Ciambelli P, Meloni E, Sin A (2015) Catalytic DPF microwave assisted active regeneration. Fuel 140:50–61

    Article  CAS  Google Scholar 

  8. Palma V, Ciambelli P, Meloni E, Sin A (2013) Study of the catalyst load for a microwave susceptible catalytic DPF. Catal Today 216(6):185–193

    Article  CAS  Google Scholar 

  9. Chen K, Martirosyan KS, Luss D (2011) Counter-intuitive temperature excursions during regeneration of a diesel particulate filter. AIChE J 57(8):2229–2236

    Article  CAS  Google Scholar 

  10. Beatrice C, Iorio SD, Guido C, Napolitano P (2012) Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp Therm Fluid Sci 39(5):45–53

    Article  CAS  Google Scholar 

  11. Bensaid S, Marchisio DL, Fino D, Saracco G, Specchia V (2009) Modelling of diesel particulate filtration in wall-flow traps. Chem Eng J 154(1–3):211–218

    Article  CAS  Google Scholar 

  12. Ranji-Burachaloo H, Masoomi-Godarzi S, Khodadadi AA, Mortazavi Y (2016) Synergetic effects of plasma and metal oxide catalysts on diesel soot oxidation. Appl Catal B Environ 182:74–84

    Article  CAS  Google Scholar 

  13. Pu X, Cai Y, Shi Y, Wang J, Gu L, Tian J et al (2017) Diesel particulate filter (DPF) regeneration using non-thermal plasma induced by dielectric barrier discharge. J Energy Inst. https://doi.org/10.1016/j.joei.2017.06.004

    Article  Google Scholar 

  14. Ma C, Gao J, Zhong L, Xing S (2016) Experimental investigation of the oxidation behavior and oxidation kinetics of diesel particulate matter with non-thermal plasma. Appl Therm Eng 99:1110–1118

    Article  CAS  Google Scholar 

  15. Thomas SE, Martin AR, Raybone D, Shawcross J Non thermal Plasma after-treatment of particulates-theoretical limits and impact on reactor design. SAE Technical Paper. 2000-01-1926

  16. Kuwahara T, Nakaguchi H, Kuroki T, Okubo M (2016) Continuous reduction of cyclic adsorbed and desorbed NOx in diesel emission using non-thermal plasma. J Hazard Mater 308:216–224

    Article  CAS  PubMed  Google Scholar 

  17. Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T (2008) Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chem Plasma Process 28(2):173–187

    Article  CAS  Google Scholar 

  18. Kuwahara T, Nishii S, Kuroki T, Okubo M (2013) Complete regeneration characteristics of diesel particulate filter using ozone injection. Appl Energy 111(11):652–656

    Article  CAS  Google Scholar 

  19. Yao S, Kodama S, Yamamoto S, Fushimi C (2009) Characterization of an uneven DBD reactor for diesel PM removal. Asia-Pac J Chem Eng 5(5):701–707

    Google Scholar 

  20. Shi Y, Cai Y, Li X (2014) Mechanism and method of DPF regeneration by oxygen radical generated by NTP technology. Int J Automot Technol 15(6):871–876

    Article  Google Scholar 

  21. Yao S, Shen X, Zhang X, Han J, Wu Z, Tan X et al (2017) Sustainable removal of particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic method. Chem Eng J 327:343–350

    Article  CAS  Google Scholar 

  22. Mao L, Chen Z, Wu X, Tang X, Yao S, Zhang X et al (2018) Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction. J Hazard Mater 347:150–159

    Article  CAS  PubMed  Google Scholar 

  23. Gu L, Cai Y, Shi Y, Wang J, Pu X, Tian J, Fan R (2017) Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles. Plasma Sci Technol 19(11):59–66

    Article  CAS  Google Scholar 

  24. Babaie M, Davari P, Talebizadeh P, Zare F, Rahimzadeh H, Ristovski Z et al (2015) Performance evaluation of non-thermal plasma on particulate matter ozone and CO2 correlation for diesel exhaust emission reduction. Chem Eng J 276(2):240–248

    Article  CAS  Google Scholar 

  25. Gao J, Ma C, Xing S, Sun L (2016) Raman characteristics of PM emitted by a diesel engine equipped with a NTP reactor. Fuel 185:289–297

    Article  CAS  Google Scholar 

  26. Wang P, Gu W, Lei L, Cai Y, Li Z (2015) Micro-structural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology. Appl Therm Eng 91:1–10

    Article  CAS  Google Scholar 

  27. Meng Z, Yang D, Yan Y (2014) Study of carbon black oxidation behavior under different heating rates. J Therm Anal Calorim 118:551–559

    Article  CAS  Google Scholar 

  28. Seong HJ, Boehman AL (2013) Evaluation of Raman parameters using visible ramanmicroscopy for soot oxidative reactivity. Energy Fuels 27:1613–1624

    Article  CAS  Google Scholar 

  29. Zhao Y, Wang Z, Liu S, Li RN, Li MD (2015) Experimental study on the oxidation reaction parameters of different carbon structure particles. Environ Prog Sustain Energy 34:1063–1071

    Article  CAS  Google Scholar 

  30. Vander Wal RL, Yezerets A, Currier NW, Kim DH, Wang CM (2007) HRTEM study of diesel soot collected from diesel particulate filters. Carbon 45:70–77

    Article  CAS  Google Scholar 

  31. Ye P, Sun C, Lapuerta M, Agudelo J, Vander Wal RL, Boehman A et al (2014) Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine. Int J Engine Res 40:57–65

    Google Scholar 

  32. Agudelo JR, Álvarez A, Armas O (2014) Impact of crude vegetable oils on the oxidation reactivity and nanostructure of diesel particulate matter. Combust Flame 161:2904–2915

    Article  CAS  Google Scholar 

  33. Chien YC, Lu M, Chai M, Boreo FJ (2008) Characterization of biodiesel and biodiesel particulate matter by TG, GC/MS, and FTIR. Energy Fuels 23:202–206

    Article  CAS  Google Scholar 

  34. Liati A, Spiteri A, Eggenschwiler PD, Vogel-Schäuble N (2012) Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot. J Nanoparticle Res 14:1–18

    Article  CAS  Google Scholar 

  35. Ruiz FA, Cadrazco M, López AF, Sanchez-Valdepeñas J, Agudelo JR (2015) Impact of dual-fuel combustion with n-butanol or hydrous ethanol on the oxidation reactivity and nanostructure of diesel particulate matter. Fuel 161:18–25

    Article  CAS  Google Scholar 

  36. Sharma HN, Pahalagedara L, Joshi A, Suib SL, Mhadeshwar AB (2012) Experimental study of carbon black and diesel engine soot oxidation kinetics using thermogravimetric analysis. Energy Fuel 26:5613–5625

    Article  CAS  Google Scholar 

  37. Marta O, Gómez X, García AI, Morán A (2008) Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials. J Therm Anal Calorim 93(2):619–626

    Article  CAS  Google Scholar 

  38. Collura S, Chaoui N, Azambre B, Finqueneisel G, Heintz O, Krzton A et al (2005) Influence of the soluble organic fraction on the thermal behaviour, texture and surface chemistry of diesel exhaust soot. Carbon 43:605–613

    Article  CAS  Google Scholar 

  39. Yagi S, Tanaka M (2001) Mechanism of ozone generation in air-fed ozonizes. J Phys D Appl Phys 9:1509

    Google Scholar 

  40. López-Fonseca R, Landa I, Gutiérrez-Ortiz MA, González-Velasco JR (2005) Non-isothermal analysis of the kinetics of the combustion of carbonaceous materials. J Therm Anal Calorim 80(1):65–69

    Article  CAS  Google Scholar 

  41. Cheng HKF, Chong MF, Liu E, Zhou K, Li L (2014) Thermal decomposition kinetics of multiwalled carbon nanotube/polypropylene nanocomposites. Therm Anal Calorim 117:63–71

    Article  CAS  Google Scholar 

  42. Kalogirou M, Samaras ZJ (2009) A thermogravimetric kinetic study of uncatalyzed diesel soot oxidation. Therm Anal Calorim 98(1):215–224

    Article  CAS  Google Scholar 

  43. Yezerets A, Currier NW, Eadler HA (2003) Investigation of the oxidation behavior of diesel particulate matter. Catal Today 88(1):17–25

    Article  CAS  Google Scholar 

  44. Meng Z, Yang D, Yan Y, Han W (2016) Comparison of oxidation characteristics analysis between diesel soot and carbon black. J Comput Sci Technol 22(1):71–76

    Google Scholar 

  45. Alfè M, Apicella B, Rouzaud JN, Tregrossi A, Ciajolo A (2010) The effect of temperature on soot properties in premixed methane flames. Combust Flame 157(10):1959–1965

    Article  CAS  Google Scholar 

  46. Randy L, Wal Vander (2006) Initial investigation of effects of fuel oxygenation on nanostructure of soot from a direct-injection diesel engine. Energy Fuel 20(6):2364–2369

    Article  CAS  Google Scholar 

  47. Gao J, Ma C, Xing S, Sun L (2017) Oxidation behaviors of particulate matter emitted by a diesel engine equipped with a NTP device. Appl Therm Eng 119:593–602

    Article  CAS  Google Scholar 

  48. Ishiguro T, Suzuki N, Fujitani Y, Morimoto H (1991) Microstructural changes of diesel soot during oxidation. Combust Flame 85(1):1–6

    Article  CAS  Google Scholar 

  49. Song J, Alam M, Boehman AL, Kim U (2006) Examination of the oxidation behavior of biodiesel soot. Combust Flame 146(4):589–604

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported primarily by the National Natural Science Foundation of China (Nos. 51806085, 51676089), the Major projects of natural science research in colleges and universities in Jiangsu Province (No. 16KJA470002), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PADA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxi Shi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Cai, Y., Shi, Y. et al. Effect of the Reaction Temperature on the Removal of Diesel Particulate Matter by Ozone Injection. Plasma Chem Plasma Process 39, 143–163 (2019). https://doi.org/10.1007/s11090-018-9947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9947-6

Keywords

Navigation