Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Magneto-ionic control of magnetism using a solid-state proton pump

Abstract

Voltage-gated ion transport as a means of manipulating magnetism electrically could enable ultralow-power memory, logic and sensor technologies. Earlier work made use of electric-field-driven O2− displacement to modulate magnetism in thin films by controlling interfacial or bulk oxidation states. However, elevated temperatures are required and chemical and structural changes lead to irreversibility and device degradation. Here we show reversible and non-destructive toggling of magnetic anisotropy at room temperature using a small gate voltage through H+ pumping in all-solid-state heterostructures. We achieve 90° magnetization switching by H+ insertion at a Co/GdOx interface, with no degradation in magnetic properties after >2,000 cycles. We then demonstrate reversible anisotropy gating by hydrogen loading in Pd/Co/Pd heterostructures, making metal–metal interfaces susceptible to voltage control. The hydrogen storage metals Pd and Pt are high spin–orbit coupling materials commonly used to generate perpendicular magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and spin–orbit torques in ferromagnet/heavy-metal heterostructures. Thus, our work provides a platform for voltage-controlled spin–orbitronics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ probing of magneto-ionic switching in different atmospheres.
Fig. 2: Electrochemical reactions in a magneto-ionic cell.
Fig. 3: Magneto-ionic switching based on hydrogen accumulation at the Co/GdOx interface.
Fig. 4: Magnetic response under short circuit and open circuit.
Fig. 5: Voltage gating of metal/metal interface by exploiting hydrogen loading in Pd.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Duan, C. G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  Google Scholar 

  2. Tsujikawa, M. & Oda, T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): a first-principles study. Phys. Rev. Lett. 102, 247203 (2009).

    Article  Google Scholar 

  3. Niranjan, M. K., Duan, C. G., Jaswal, S. S. & Tsymbal, E. Y. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96, 107–110 (2010).

    Article  Google Scholar 

  4. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

    CAS  Google Scholar 

  5. Shiota, Y. et al. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2, 063001 (2009).

    Article  Google Scholar 

  6. Bauer, U., Emori, S. & Beach, G. S. D. Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotech. 8, 411–416 (2013).

    CAS  Google Scholar 

  7. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2014).

    Article  Google Scholar 

  8. Bi, C. et al. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113, 267202 (2014).

    Article  Google Scholar 

  9. Li, H. B. et al. Electric-field control of ferromagnetism through oxygen ion gating. Nat. Commun. 8, 2156 (2017).

    Article  Google Scholar 

  10. Gilbert, D. A. et al. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nat. Commun. 7, 12264 (2016).

    Article  CAS  Google Scholar 

  11. Gilbert, D. A. et al. Controllable positive exchange bias via redox-driven oxygen migration. Nat. Commun. 7, 11050 (2016).

    Article  CAS  Google Scholar 

  12. Grutter, A. J. et al. Reversible control of magnetism in La0.67Sr0.33MnO3 through chemically-induced oxygen migration. Appl. Phys. Lett. 108, 82405 (2016).

    Article  Google Scholar 

  13. Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

    Article  CAS  Google Scholar 

  14. Di, N. et al. Influence of controlled surface oxidation on the magnetic anisotropy of Co ultrathin films. Appl. Phys. Lett. 106, 122405 (2015).

    Article  Google Scholar 

  15. Duschek, K., Uhlemann, M., Schlörb, H., Nielsch, K. & Leistner, K. Electrochemical and in-situ magnetic study of iron/iron oxide films oxidized and reduced in KOH solution for magneto-ionic switching. Electrochem. Commun. 72, 153–156 (2016).

    Article  CAS  Google Scholar 

  16. Walter, J. et al. Ion-gel-gating-induced oxygen vacancy formation in epitaxial La0.5Sr0.5CoO films from in operando X-ray and neutron scattering. Phys. Rev. Mater. 1, 071403 (2017).

    Article  Google Scholar 

  17. Walter, J., Wang, H., Luo, B., Frisbie, C. D. & Leighton, C. Electrostatic versus electrochemical doping and control of ferromagnetism in ion-gel-gated ultrathin La0.5Sr0.5CoO3-δ. ACS Nano 10, 7799–7810 (2016).

    Article  CAS  Google Scholar 

  18. Leng, X. et al. Insulator to metal transition in WO3 induced by electrolyte gating. npj Quantum Mater. 2, 35 (2017).

    Article  Google Scholar 

  19. Zhang, Q. et al. Lithium-ion battery cycling for magnetism control. Nano. Lett. 16, 583–587 (2016).

    Article  CAS  Google Scholar 

  20. Zhu, X. et al. In situ nanoscale electric field control of magnetism by nanoionics. Adv. Mater. 28, 7658–7665 (2016).

    Article  CAS  Google Scholar 

  21. Dasgupta, S. et al. Toward on-and-off magnetism: reversible electrochemistry to control magnetic phase transitions in spinel ferrites. Adv. Funct. Mater. 26, 7507–7515 (2016).

    Article  CAS  Google Scholar 

  22. Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2017).

    Google Scholar 

  23. Pershin, Y. V. & Di Ventra, M. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010).

    Article  Google Scholar 

  24. Knag, P., Member, S., Lu, W. & Zhang, Z. A native stochastic computing architecture enabled by memristors. IEEE Trans. Nanotechnol. 13, 283–293 (2014).

    Article  CAS  Google Scholar 

  25. Adams, B. D. & Chen, A. The role of palladium in a hydrogen economy. Mater. Today 14, 282–289 (2011).

    Article  CAS  Google Scholar 

  26. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2002).

    Article  Google Scholar 

  27. Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  Google Scholar 

  28. Hoffmann, A. Spin Hall effects in metals. IEEE. Trans. Magn. 49, 5172–5193 (2013).

    Article  CAS  Google Scholar 

  29. Parkin, S. S. P., Bhadra, R. & Roche, K. P. Oscillatory magnetic exchange coupling through thin copper layers. Phys. Rev. Lett. 66, 2152–2155 (1991).

    Article  CAS  Google Scholar 

  30. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    Article  CAS  Google Scholar 

  31. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    Article  CAS  Google Scholar 

  32. Rodriguez, J. A., Liu, P., Hrbek, J., Evans, J. & Pérez, M. Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. Angew. Chem. Int. Ed. 46, 1329–1332 (2007).

    Article  CAS  Google Scholar 

  33. Valov, I. & Lu, W. D. Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale 8, 13828–13837 (2016).

    Article  CAS  Google Scholar 

  34. Tsuruoka, T. et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012).

    Article  CAS  Google Scholar 

  35. Yin, Q. et al. Cathode bubbles induced by moisture electrolysis in TiO2-x-based resistive switching cells. J. Phys. D. 49, 09LT01 (2016).

    Article  Google Scholar 

  36. Kreuer, K. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).

    Article  CAS  Google Scholar 

  37. Norby, T., Widerøe, M., Glöckner, R. & Larring, Y. Hydrogen in oxides. Dalt. Trans. 0, 3012–3018 (2004).

    CAS  Google Scholar 

  38. Shirpour, M., Gregori, G., Merkle, R. & Maier, J. On the proton conductivity in pure and gadolinium doped nanocrystalline cerium oxide. Phys. Chem. Chem. Phys. 13, 937–940 (2011).

    Article  CAS  Google Scholar 

  39. Bi, L., Boulfrad, S. & Traversa, E. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem. Soc. Rev. 43, 8255–8270 (2014).

    Article  CAS  Google Scholar 

  40. Cohen, S. et al. The interaction of H2O with the surface of polycrystalline gadolinium at the temperature range of 300-570 K. Surf. Sci. 617, 29–35 (2013).

    Article  CAS  Google Scholar 

  41. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  42. Sander, D. et al. Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203 (2004).

    Article  CAS  Google Scholar 

  43. Munbodh, K., Perez, F. A., Keenan, C. & Lederman, D. Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers. Phys. Rev. B 83, 94432 (2011).

    Article  Google Scholar 

  44. Thompson, A. C. & Vaughn, D. X-Ray Data Booklet (Center for X-ray Optics and Advanced Light Source, Berkeley, 2001); http://xdb.lbl.gov

  45. Bennett, P. A. & Fuggle, J. C. Electronic structure and surface kinetics of palladium hydride studied with X-ray photoelectron spectroscopy and electron-energy-loss spectroscopy. Phys. Rev. B 26, 6030–6039 (1982).

    Article  CAS  Google Scholar 

  46. Davoli, I. et al. Palladium L3 absorption edge of PdH0.6 films: evidence for hydrogen induced unoccupied states. Solid State Commun. 71, 383–390 (1989).

    Article  CAS  Google Scholar 

  47. Tew, M. W., Miller, J. T. & van Bokhoven, J. A. Particle size effect of hydride formation and surface hydrogen adsorption of nanosized palladium catalysts: L3 edge vs K edge X-ray absorption spectroscopy. J. Phys. Chem. C 113, 15140–15147 (2009).

    Article  CAS  Google Scholar 

  48. Richardson, T. J. et al. X-ray absorption spectroscopy of transition metal-magnesium hydride thin films. J. Alloys Compd. 356–357, 204–207 (2003).

    Article  Google Scholar 

  49. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

    Article  CAS  Google Scholar 

  50. Katase, T., Onozato, T., Hirono, M., Mizuno, T. & Ohta, H. A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry. Sci. Rep. 6, 25819 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Science Foundation (NSF) through the Massachusetts Institute of Technology Materials Research Science and Engineering Center (MRSEC) under award number DMR-1419807. We acknowledge technical support from D. Bono. We also thank A. Grimaud for insights on the electrochemistry of water splitting. Work was performed using facilities in the MIT Microsystems Technology Laboratory and in the Center for Materials Science and Engineering, supported by the NSF MRSEC programme under award number DMR–1419807. This research used resources from the 23-ID-1 Coherent Soft X-ray Scattering beamline of the National Synchrotron Light Source II, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract number DE-SC0012704.

Author information

Authors and Affiliations

Authors

Contributions

A.J.T. and G.S.D.B. conceived and designed the experiments. G.S.D.B. supervised the project. H.L.T. provided insight into the reaction processes and mechanisms. A.J.T. fabricated the samples with assistance from M.H. C.O.A. and A.J.T. conducted the anomalous and planar Hall measurements. F.B., W.H., C.M. and A.J.T. performed the XAS measurements. S.W. provided insights on the XAS data. A.J.T. performed the MOKE measurements with help from M.M. A.J.T. wrote the manuscript with guidance from H.L.T and G.S.D.B. All authors discussed the results.

Corresponding author

Correspondence to Geoffrey S. D. Beach.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–14, Supplementary Figures 1–14, Supplementary References 1–26

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, A.J., Huang, M., Avci, C.O. et al. Magneto-ionic control of magnetism using a solid-state proton pump. Nature Mater 18, 35–41 (2019). https://doi.org/10.1038/s41563-018-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0211-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing