Skip to main content

Advertisement

Log in

Molten salt synthesis of Co-entrapped, N-doped porous carbon from various nitrogen precursors as efficient electrocatalysts for hydrogen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We synthesized a variety of Co-entrapped, N-doped porous carbon materials via a molten salt process. Dicyandiamide, urea, guanidine hydrochloride, and histidine were used as the nitrogen precursors. Glucose and ZnCl2 were used as carbon precursor and template, respectively. The nitrogen precursors greatly affect the porous structures of the final samples and thus the electrocatalytic activities toward hydrogen evolution reaction (HER). All the samples possess porous structures with high surface area and large pore volume. Electrocatalytic tests for hydrogen evolution reaction show that CoNDC-G is highly active for HER in alkaline media and is stable in the reaction without appreciated loss of activity after 10 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wan Y, Zhao D (2007) On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  2. Shi Y, Wan Y, Zhao D (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40:3854–3878

    Article  CAS  Google Scholar 

  3. Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805

    Article  CAS  Google Scholar 

  4. Yang D, Lu Z, Rui X, Huang X, Li H, Zhu J, Zhang W, Lam YM, Hng HH, Zhang H, Yan Q (2014) Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew Chem Int Ed 53:9352–9355

    Article  CAS  Google Scholar 

  5. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927

    Article  CAS  Google Scholar 

  6. Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7:344–366

    Article  Google Scholar 

  7. Watanabe H, Asano S, Fujita S, Yoshida H, Arai M (2015) Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal 5:2886–2894

    Article  CAS  Google Scholar 

  8. Qiao X, Peng H, You C, Liu F, Zheng R, Xu D, Li X, Liao S (2015) Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. J Power Sour 288:253–260

    Article  CAS  Google Scholar 

  9. Xu GR, Bai J, Yao L, Xue Q, Jiang JX, Zeng JH, Chen Y, Lee JM (2017) Polyallylamine-functionalized platinum tripods: enhancement of hydrogen evolution reaction by proton carriers. ACS Catal 7:452–458

    Article  CAS  Google Scholar 

  10. Chen GF, Ma TY, Liu ZQ, Li N, Su YZ, Davey K, Qiao SZ (2016) Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv Funct Mater 26:3314–3323

    Article  CAS  Google Scholar 

  11. Wang Z, Liu H, Ge R, Ren X, Ren J, Yang D, Zhang L, Sun X (2018) Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal 8:2236–2241

    Article  CAS  Google Scholar 

  12. Zhou G, Yang Q, Guo X, Chen Y, Yang Q, Xu L, Sun D, Tang Y (2018) Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy 43:9326–9333

    Article  CAS  Google Scholar 

  13. Pampel J, Fellinger TP (2016) Opening of bottleneck pores for the improvement of nitrogen doped carbon electrocatalysts. Adv Energy Mater 6:1502389–1502396

    Article  Google Scholar 

  14. Pampel J, Denton C, Fellinger TP (2016) Glucose derived ionothermal carbons with tailor-made porosity. Carbon 107:288–296

    Article  CAS  Google Scholar 

  15. Huang G, Du X, Zhang F, Yin D, Wang L (2015) A facile molten-salt route for large-scale synthesis of NiFe2O4 nanoplates with enhanced lithium storage capability. Chem Eur J 21:14140–14145

    Article  CAS  Google Scholar 

  16. Deng J, He S, Xie S, Yang H, Liu Y, Guo G, Dai H (2015) Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts: a high-efficiency catalyst for the oxidative removal of toluene. Environ Sci Technol 49:11089–11095

    Article  CAS  Google Scholar 

  17. Chen X, Bleken FL, Løvvik OM, Vullum-Bruer F (2016) Comparing electrochemical performance of transition metal silicate cathodes and Chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery system. J Power Sour 321:76–86

    Article  CAS  Google Scholar 

  18. Huang Y, Yang F, Xu Z, Shen J (2011) Nitrogen-containing mesoporous carbons prepared from melamine formaldehyde resins with CaCl2 as a template. J Colloid Interface Sci 363:193–198

    Article  CAS  Google Scholar 

  19. Yu Z, Wang X, Song X, Liu Y, Qiu J (2015) Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal. Carbon 95:852–860

    Article  CAS  Google Scholar 

  20. Sun F, Gao J, Liu X, Pi X, Yang Y, Wu S (2016) Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl Surf Sci 387:857–863

    Article  CAS  Google Scholar 

  21. Wang Y, Li Y, Ju W, Wang J, Yao H, Zhang L, Wang J, Li Z (2016) Molten salt synthesis of water-dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes. Carbon 102:477–486

    Article  CAS  Google Scholar 

  22. Liu B, Guo ZP, Du G, Nuli Y, Hassan MF, Jia D (2010) In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries. J Power Sour 195:5382–5386

    Article  CAS  Google Scholar 

  23. Zhu F, Li C, Ha MN, Liu Z, Guo Q, Zhao Z (2016) Molten-salt synthesis of Cu-SrTiO3/TiO2 nanotube heterostructures for photocatalytic water splitting. J Mater Sci 51:4639–4649. https://doi.org/10.1007/s10853-016-9779-9

    Article  CAS  Google Scholar 

  24. Li K, Tang D, Zhang W, Qiao ZA, Liu Y, Huo Q, Liang D, Zhu J, Zhao Z (2017) Molten salt synthesis of Co-entrapped, N-doped porous carbon as efficient hydrogen evolving electrocatalysts. Mater Lett 209:256–259

    Article  CAS  Google Scholar 

  25. Li XH, Antonietti M (2013) Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chem Soc Rev 42:6593–6604

    Article  CAS  Google Scholar 

  26. Han J, Gu F, Li Y (2016) N-doped sub-3 nm Co nanoparticles as highly efficient and durable aerobic oxidative coupling catalysts. Chem Asian J 11:2594–2601

    Article  CAS  Google Scholar 

  27. Wang JG, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B (2018) One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127:85–92

    Article  CAS  Google Scholar 

  28. Zhang Y, Lu L, Zhang S, Lv Z, Yang D, Liu J, Chen Y, Tian X, Jin H, Song W (2018) Biomass chitosan derived cobalt/nitrogen doped carbon nanotube for electrocatalytic oxygen reduction reaction. J Mater Chem A 6:5740–5745

    Article  CAS  Google Scholar 

  29. Zhong W, Liu H, Bai C, Liao S, Li Y (2015) Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysts. ACS Catal 5:1850–1856

    Article  CAS  Google Scholar 

  30. Wang J, Gao D, Wang G, Miao S, Wu H, Lia J, Bao X (2014) Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. J Mater Chem A 2:20067–20074

    Article  CAS  Google Scholar 

  31. Zhang Y, Li W, Lu L, Song W, Wang C, Zhou L, Liu J, Chen Y, Jin H, Zhang Y (2017) Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution. Electrochim Acta 265:497–506

    Article  Google Scholar 

  32. Si Y, Zhang Y, Lu Lu, Zhang S, Chen Y, Liu Jinghai, Jin Hongyun, Hou Shuen, Dai Kai, Song Weiguo (2018) Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon. J Catal 225:512–518

    CAS  Google Scholar 

  33. Guo H, Wang M, Zhao L, Youliwasi N, Liu C (2018) The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Microporous Mesoporous Mater 263:21–27

    Article  CAS  Google Scholar 

  34. Wei Z, Chen Y, Wang J, Su D, Tang M, Mao S, Wang Y (2016) Cobalt encapsulated in N-doped graphene layers: an efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal 6:5816–5822

    Article  CAS  Google Scholar 

  35. Pu Z, Amiinu IS, Zhang C, Wang M, Kou Z, Mu S (2017) Phytic acid-derivative transition metal phosphides encapsulated in N, P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale 9:3555–3560

    Article  CAS  Google Scholar 

  36. Huang T, Chen Y, Lee JM (2017) Two-dimensional cobalt/N-doped carbon hybrid structure derived from metal − organic frameworks as efficient electrocatalysts for hydrogen evolution. ACS Sustainable Chem Eng 5:5646–5650

    Article  CAS  Google Scholar 

  37. Xing Z, Liu Q, Xing W, Asiri AM, Sun X (2015) Interconnected Co-entrapped, N-doped carbon nanotube film as active hydrogen evolution cathode over the whole pH range. Chemsuschem 8:1850–1855

    Article  CAS  Google Scholar 

  38. Zhang H, Ma Z, Duan J, Liu H, Liu G, Wang T, Chang K, Li M, Shi L, Meng X, Wu K, Ye J (2016) Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10:684–694

    Article  CAS  Google Scholar 

  39. Su H, Wang HH, Zhang B, Wang KX, Li XH, Chen JS (2016) Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal-organic complexes for highly efficient hydrogen evolution. Nano Energy 22:79–86

    Article  CAS  Google Scholar 

  40. Gao S, Li GD, Liu Y, Chen H, Feng LL, Wang Y, Yang M, Wang D, Wang S, Zou X (2015) Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale 7:2306–2316

    Article  CAS  Google Scholar 

  41. Chen J, Zhou H, Huang Y, Yu H, Huang F, Zheng F, Li S (2016) A 3D Co-CN framework as high performance electrocatalyst for hydrogen evolution reaction. RSC Adv 6:42014–42018

    Article  CAS  Google Scholar 

  42. Zhang Z, Yang S, Dou M, Ji J, Wang F (2016) Cobalt-nitrogen doped 3D porous carbon prepared with self-generated nanoparticles as sacrificial templates for hydrogen generation. Int J Hydrogen Energy 42:4193–4201

    Article  Google Scholar 

  43. Xue Y, Li J, Xue Z, Li Y, Liu H, Li D, Yang W, Li Y (2016) Extraordinarily durable graphdiyne-supported electrocatalyst with high activity for hydrogen production at all values of pH. ACS Appl Mater Interfaces 8:31083–31091

    Article  CAS  Google Scholar 

  44. Fei H, Yang Y, Peng Z, Ruan G, Zhong Q, Li L, Samuel ELG, Tour JM (2015) Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. ACS Appl Mater Interfaces 7:8083–8087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (No. 21601128), the Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education (No. SWZCL2016-15), the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (No. 2017-14), the Key Point Research and Invention Program of the Science and Technology Department of Liaoning Province (2017308006), the Natural Science Foundation of Liaoning Province of China (201602681), the Shenyang Municipal Science and Technology Planning projects (17-76-1-00), the Program for Excellent Talents in Shenyang Normal University (Nos. 054-51600210, BS201621, 41500108002), Engineering Technology Research Center of Catalysis for Energy and Environment, Major Platform for Science and Technology of the Universities in Liaoning Province, Liaoning Province Key Laboratory for Highly Efficient Conversion and Clean Utilization of Oil and Gas Resources, and the Engineering Research Center for Highly Efficient Conversion and Clean Use of Oil and Gas Resources of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duihai Tang, Junjiang Zhu or Zhen Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Tang, D., Zhang, W. et al. Molten salt synthesis of Co-entrapped, N-doped porous carbon from various nitrogen precursors as efficient electrocatalysts for hydrogen evolution. J Mater Sci 54, 638–647 (2019). https://doi.org/10.1007/s10853-018-2852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2852-9

Keywords

Navigation