Skip to main content
Log in

Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrodeposition of zinc with thiourea derivatives as additives was investigated. The dynamic deposition and dissolution processes of zinc deposits were monitored in situ with synchrotron radiation X-ray imaging to reveal the inhibition role of additives on zinc dendrites. The real-time images show a large amount of zinc dendrites grow directly on the substrate surface in blank electrolyte. The microstructure of zinc deposits is sensitive to the molecular structure of additives. After adding thiourea derivatives, both the nucleation overpotential and the degree of polarization increase in the order of additive-free < thiourea (TU) < allylthiourea (ATU) < methylthiourea (MTU). TU can suppress partly the formation of zinc dendrites but the zinc deposits present a very loose structure. Both ATU and MTU can effectively inhibit the growth of zinc dendrites and get smooth deposits. Moreover, the anodic stripping of deposited zinc in the presence of MTU can proceed with a homogenous dissolution. These results will potentially benefit for the zinc-based rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Li Y, Dai H (2014) Recent advances in zinc–air batteries. Chem Soc Rev 43:5257

    Article  CAS  Google Scholar 

  2. Pei P, Wang K, Ma Z (2014) Technologies for extending zinc–air battery’s cyclelife: A review. Appl Energy 128:315

    Article  CAS  Google Scholar 

  3. Otani T, Nagata M, Fukunaka Y, Homma T (2016) Morphological evolution of mossy structures during the electrodeposition of zinc from an alkaline zincate solution. Electrochim Acta 206:366

    Article  CAS  Google Scholar 

  4. Kinoshita DK (1992) Electrochemical oxygen technology. Wiley, New York, pp 3–12

    Google Scholar 

  5. Sumboja A, Ge X, Zheng G et al (2016) Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. J Power Sour 332:330

    Article  CAS  Google Scholar 

  6. Pasquale M, Gassa L, Arvia A (2008) Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochim Acta 53:5891

    Article  CAS  Google Scholar 

  7. Ortiz-Aparicio J, Meas Y, Trejo G, Ortega R, Chapman T, Chainet E (2013) Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J Appl Electrochem 43:289

    Article  CAS  Google Scholar 

  8. MacKinnon D, Brannen J (1982) Evaluation of organic additives as levelling agents for zinc electrowinning from chloride electrolytes. J Appl Electrochem 12:21

    Article  CAS  Google Scholar 

  9. Gu W, Liu C, Tang J, Liu R, Yang H, Hu J (2018) Improving zinc electrodeposition in ammoniacal electrolytes with the saturated dissolved methyltrioctylammonium chloride. Hydrometallurgy 175:43

    Article  CAS  Google Scholar 

  10. Xia Z, Yang S, Tang M (2015) Nucleation and growth orientation of zinc electrocrystallization in the presence of gelatin in Zn(II)–NH3–NH4Cl–H2O electrolytes. RSC Adv 5:2663

    Article  CAS  Google Scholar 

  11. Ballesteros J, Díaz-Arista P, Meas Y, Ortega R, Trejo G (2007) Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim Acta 52:3686

    Article  CAS  Google Scholar 

  12. Zhu YL, Katayama Y, Miura T (2012) Effects of acetone and thiourea on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochim Acta 85:622

    Article  CAS  Google Scholar 

  13. Li M, Jiang L, Zhang W, Qian Y, Luo S, Shen J (2007) Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives. J Solid State Electrochem 11:549

    Article  CAS  Google Scholar 

  14. Lukovits I, Bakó I, Shaban A, Kálmán E (1998) Polynomial model of the inhibition mechanism of thiourea derivatives. Electrochim Acta 43:131

    Article  CAS  Google Scholar 

  15. Tunçel M, Serin S (2003) Synthesis and characterization of Copper(II), Nickel(II), and Cobalt(II) chelates with tridentate schiff base ligands derived from 4-Amino-5-hydroxynaphthalene- 2,-7-disulfonic acid. Synth React Inorg M 33:985

    Article  Google Scholar 

  16. Awad MK (2004) Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors. J Electroanal Chem 567:219

    Article  CAS  Google Scholar 

  17. Chen G, Lin H, Lu J, Wen L, Zhou J, Lin Z (2008) SERS and EQCM studies on the effect of allyl thiourea on copper dissolution and deposition in aqueous sulfuric acid. J Appl Electrochem 38:1501

    Article  CAS  Google Scholar 

  18. Fang J, Li J (2002) Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J Mol Struct Theochem 593:179

    Article  CAS  Google Scholar 

  19. Song Y, Hu J, Tang J, Gu W, He L, Ji X (2016) Real-time X-ray imaging reveals interfacial growth, suppression, and dissolution of zinc dendrites dependent on anions of ionic liquid additives for rechargeable battery applications. ACS Appl Mater Interfaces 8:32031

    Article  CAS  Google Scholar 

  20. Deng M-J, Sun IW, Chen P-Y, Chang J-K, Tsai W-T (2008) Electrodeposition behavior of nickel in the water- and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid. Electrochim Acta 53:5812

    Article  CAS  Google Scholar 

  21. Huang H-Y, Chen P-Y (2011) Voltammetric behavior of Pd(II) and Ni(II) ions and electrodeposition of PdNi bimetal in N-butyl-N-methylpyrrolidinium dicyanamide ionic liquid. Electrochim Acta 56:2336

    Article  CAS  Google Scholar 

  22. Lü B, Hu Z, Wang X, Xu B (2015) Thermal stability of electrodeposited nanocrystalline nickel assisted by flexible friction. Trans Nonferrous Metal Soc 25:3297

    Article  Google Scholar 

  23. Margaritondo G, Hwu Y, Je JH (2004) Synchrotron light in medical and materials science radiology. Riv Nuovo Cimento 27:1

    Google Scholar 

  24. Tsai WL, Hsu PC, Hwu Y et al (2003) Edge-enhanced radiology with broadband synchrotron X-rays. Nucl Instrum Methods B 199:436

    Article  CAS  Google Scholar 

  25. Hwu Y, Tsai W-L, Groso A, Margaritondo G, Je JH (2002) Coherence-enhanced synchrotron radiology: simple theory and practical applications. J Phys D Appl Phys 35:R105

    Article  CAS  Google Scholar 

  26. Meuli R, Hwu Y, Je JH, Margaritondo G (2004) Synchrotron radiation in radiology: radiology techniques based on synchrotron sources. Eur Radiol 14:1550

    Article  Google Scholar 

  27. Song Y, Hu J, Gu W, Tang J, Fu Y, Ji X (2017) The dynamic interfacial understanding of zinc electrodeposition in ammoniacal media through synchrotron radiation techniques. J Electrochem Soc 164:230

    Article  Google Scholar 

  28. Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem 159:267

    Article  CAS  Google Scholar 

  29. Xu M, Ivey DG, Qu W, Xie Z (2015) Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J Power Sources 274:1249

    Article  CAS  Google Scholar 

  30. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  31. Zhang Q, Yu X, Hua Y, Xue W (2014) The effect of quaternary ammonium-based ionic liquids on copper electrodeposition from acidic sulfate electrolyte. J Appl Electrochem 45:79

    Article  Google Scholar 

  32. Awad MK (2004) Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors. J Electroanal Chem 567:219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2014CB643401), and the Hunan Provincial Science, and Technology Plan Project of China (No. 2016TP1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiugang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, S., Tang, J. et al. Effective inhibition of zinc dendrites during electrodeposition using thiourea derivatives as additives. J Mater Sci 54, 3536–3546 (2019). https://doi.org/10.1007/s10853-018-3069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3069-7

Keywords

Navigation