Skip to main content

Advertisement

Log in

High strain rate deformation of nanostructured super bainite

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Outstanding mechanical properties of nanostructured carbide-free hard bainitic steels, also known as super bainite, with microstructural constituents of less than 100 nm thicknesses make them prone to be used in different engineering applications. However, besides their exceptional strength and ductility combinations during ordinary static or quasi-static deformation modes, it would be also interesting to evaluate their mechanical behavior under high strain rate deformation conditions. This article aims to investigate the mechanical performance of nanostructured super bainite isothermally obtained at 300 °C by applying both tensile and compressive high strain rate deformation modes. Hopkinson compressive and tensile tests were performed up to the maximum strain rate levels of 1.82 × 103 s−1 and 1.040 × 104 s−1, respectively. Results indicated that strength and ductility properties both significantly were dependent on the strain rate values during tension and compression even if the effect of tensile deformation mode was more considerable. The strength level enhanced to almost 3000 MPa at the highest tensile deformation rate. According to the results, the transformation-induced plasticity (TRIP) effect could not be effective in ductility promotion at higher tensile strain rate deformations since the austenite-to-martensite transformation did not take place gradually to produce a proficient transformation-induced plasticity effect. As a result, a premature TRIP effect occurred and resulted in lower energy absorption during deformation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bhadeshia HKDH (2005) Hard bainite. Solid Solid Phase Trans 1:469–484

    CAS  Google Scholar 

  2. Gong W, Tomota Y, Adachi Y, Paradowska A, Kelleher J, Zhang S (2013) Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel. Acta Mater 61(11):4142–4154

    Article  CAS  Google Scholar 

  3. Gong W, Tomota Y, Koo M, Adachi Y (2010) Effect of ausforming on nanobainite steel. Scr Mater 63(8):819–822

    Article  CAS  Google Scholar 

  4. García Mateo C, Caballero FG, Bhadeshia HKDH (2003) Development of hard bainite. ISIJ Int 43(8):1238–1243

    Article  Google Scholar 

  5. Bhadeshia HKDH, Brown P, Garcia-Mateo C (2010) Bainite steel and methods of manufacture therof. Patent no. GB2462197

  6. Rakha K, Beladi H, Timokhina I, Xiong X, Kabra S, Liss K-D, Hodgson P (2014) On low temperature bainite transformation characteristics using in situ neutron diffraction and atom probe tomography. Mater Sci Eng A 589:303–309

    Article  CAS  Google Scholar 

  7. Yoozbashi M, Yazdani S, Wang T (2011) Design of a new nanostructured, high-Si bainitic steel with lower cost production. Mater Des 32(6):3248–3253

    Article  CAS  Google Scholar 

  8. Solano-Alvarez W, Abreu H, da Silva M, Peet M (2015) Phase quantification in nanobainite via magnetic measurements and X-ray diffraction. J Magn Magn Mater 378:200–205

    Article  CAS  Google Scholar 

  9. Huang H, Sherif M, Rivera-Díaz-del-Castillo P (2013) Combinatorial optimization of carbide-free bainitic nanostructures. Acta Mater 61(5):1639–1647

    Article  CAS  Google Scholar 

  10. Amel-Farzad H, Faridi HR, Rajabpour F, Abolhasani A, Kazemi S, Khaledzadeh Y (2013) Developing very hard nanostructured bainitic steel. Mater Sci Eng A 559:68–73

    Article  CAS  Google Scholar 

  11. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2005) Mechanical properties of low temperature bainite. Trans Tech Publ 500–501:495–502

    Google Scholar 

  12. Garbarz B, Niznik-Haranczyk B (2015) Modification of microstructure to increase impact toughness of nanostructured bainite-austenite steel. Mater Sci Technol 31(7):773–780

    Article  CAS  Google Scholar 

  13. Lan H, Du L, Zhou N, Liu X (2014) Effect of austempering route on microstructural characterization of nanobainitic steel. Acta Metall Sin Engl. Lett. 27(1):19–26

    Article  CAS  Google Scholar 

  14. Garcia-Mateo C, Caballero FG (2005) Ultra-high-strength bainitic steels. ISIJ Int 45(11):1736–1740

    Article  CAS  Google Scholar 

  15. Han B, Chen L, Wu S-J (2015) Effect of austempering–partitioning on the bainitic transformation and mechanical properties of a high-carbon steel. Acta Metall Sin Engl Lett 28(5):614–618

    Article  CAS  Google Scholar 

  16. Sandvik B, Nevalainen H (1981) Structure-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness. Metals Technol 8(1):213–220

    Article  CAS  Google Scholar 

  17. Babu S, Vogel S, Garcia-Mateo C, Clausen B, Morales-Rivas L, Caballero F (2013) Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scr Mater 69(11):777–780

    Article  CAS  Google Scholar 

  18. García Mateo C, Caballero FG (2005) The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater Trans 46:1839–1846

    Article  Google Scholar 

  19. Morales-Rivas L, Garcia-Mateo C, Kuntz M, Sourmail T, Caballero F (2016) Induced martensitic transformation during tensile test in nanostructured bainitic steels. Mater Sci Eng A 662:169–177

    Article  CAS  Google Scholar 

  20. Avishan B, Garcia-Mateo C, Morales-Rivas L, Yazdani S, Caballero FG (2013) Strengthening and mechanical stability mechanisms in nanostructured bainite. J Mater Sci 68:6121–6132. https://doi.org/10.1007/s10853-013-7408-4

    Article  CAS  Google Scholar 

  21. Garcia-Mateo C, Caballero FG, Chao J, Capdevila C, Garcia de Andres C (2009) Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J Mater Sci 44(17):4617–4624. https://doi.org/10.1007/s10853-009-3704-4

    Article  CAS  Google Scholar 

  22. Tsai Y, Lin C, Lee W, Huang C, Yang J (2016) Mechanical behavior and microstructural evolution of nanostructured bainite under high-strain rate deformation by Hopkinson bar. Scr Mater 115:46–51

    Article  CAS  Google Scholar 

  23. Curtze S, Kundu M, Kuokkala V-T, Datta S, Chattopadhyay P (2008) Dynamic properties of new generation high-strength steels for armoring applications. In: Proceedings of the 2008 SEM XI international congress and exposition on experimental and applied mechanics, June 2–5, 2008, Orlando, Florida, USA

  24. Wang W, Li M, He C, Wei X, Wang D, Du H (2013) Experimental study on high strain rate behavior of high strength 600–1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Mater Des 47:510–521

    Article  CAS  Google Scholar 

  25. Bhadeshia H (1998) New bainitic steels by design. Modell Simul Mater Des, 227–232

  26. Yang HS, Bhadeshia HKDH (2008) Designing low carbon, low temperature bainite. Mater Sci Technol 24(3):335–342

    Article  CAS  Google Scholar 

  27. Bhadeshia HKDH, Edmonds DV (1983) Bainite in silicon steels: new composition; property approach part 1. Met Sci 17(9):411–419

    Article  CAS  Google Scholar 

  28. Bhadeshia HKDH, Edmonds DV (1983) Bainite in silicon steels: new composition—property approach part 2. Met Sci 17(9):420–425

    Article  CAS  Google Scholar 

  29. Song SH, Faulkner RG, Flewitt PEJ (2000) Quenching and tempering-induced molybdenum segregation to grain boundaries in a 2.25 Cr–1Mo steel. Mater Sci Eng A 281(1):23–27

    Article  Google Scholar 

  30. García Mateo C, Caballero FG, Bhadeshia HKDH (2003) Acceleration of low-temperature bainite. ISIJ Int 43(11):1821–1825

    Article  Google Scholar 

  31. Bhadeshia HKDH (2001) Bainite in steels, transformations, microstructure and properties, 2nd edn. Institute of Materials, Minerals and Mining, London

    Google Scholar 

  32. Majzoobi G, Mahmoudi A, Moradi S (2016) Ductile to brittle failure transition of HSLA-100 steel at high strain rates and subzero temperatures. Eng Fract Mech 158:179–193

    Article  Google Scholar 

  33. Wang W, Li M, He C, Wei X, Wang D, Du H (2013) Experimental study on high strain rate behavior of high strength 600–1000 MPa dual phase steels and 1200 MPa fully martensitic steels. Mater Des 47:510–521

    Article  CAS  Google Scholar 

  34. Lee W-S, Lin C-F, Chen T-H, Yang M-C (2010) High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate. Mater Sci Eng A 527((13-14)):3127–3137

    Article  Google Scholar 

  35. Lee W-S, Lin C-F, Chen T-H, Chen H-W (2011) Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range. Mater Sci Eng A 528((19-20)):6279–6286

    Article  CAS  Google Scholar 

  36. Vuoristo T, Kuokkala VT, Keskinen E (2002) Modeling of the deformation behavior of polymer composites at high strain rates and at elevated temperatures, in key engineering materials. Trans Tech Publ 221–222:221–232

    Google Scholar 

  37. Vuoristo T, Kuokkala V-T (2002) Creep, recovery and high strain rate response of soft roll cover materials. Mech Mater 34(8):493–504

    Article  Google Scholar 

  38. Lee W-S, Chen T-H (2006) Dynamic mechanical response and microstructural evolution of high strength aluminum–scandium (Al–Sc) alloy. Mater Trans 47(2):355–363

    Article  Google Scholar 

  39. Gomez-del Rio T, Barbero E, Zaera R, Navarro C (2005) Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar. Compos Sci Technol 65(1):61–71

    Article  CAS  Google Scholar 

  40. Sunny G, Yuan F, Prakash V, Lewandowski J (2009) Design of inserts for split-Hopkinson pressure bar testing of low strain-to-failure materials. Exp Mech 49(4):479–490

    Article  CAS  Google Scholar 

  41. Ramesh KT (2008) High rates and impact experiments. In springer handbook of experimental solid mechanics. Springer, Berlin, p 929

    Book  Google Scholar 

  42. Chang LC, Bhadeshia HKDH (1995) Austenite films in bainitic microstructures. Mater Sci Technol 11(9):874–881

    Article  CAS  Google Scholar 

  43. Cullity BD, Stock SR (2001) Elements of x-ray diffraction, 3rd edn. Prentice Hall, NewYork

    Google Scholar 

  44. Dickson MJ (1969) The significance of texture parameters in phase analysis by x-ray diffraction. J Appl Crystallogr 2(4):176–180

    Article  CAS  Google Scholar 

  45. Avishan B, Yazdani S, Nedjad SH (2012) Toughness variations in nanostructured bainitic steels. Mater Sci Eng A 548:106–111

    Article  CAS  Google Scholar 

  46. Avishan B, Garcia-Mateo C, Yazdani S, Caballero FG (2013) Retained austenite thermal stability in a nanostructured bainitic steel. Mater Charact 81:105–110

    Article  CAS  Google Scholar 

  47. Avishan B (2017) Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel. Int J Miner Metall Mater 24(9):1010–1020

    Article  CAS  Google Scholar 

  48. Morales-Rivas L, Garcia-Mateo C, Sourmail T, Kuntz M, Rementeria R, Caballero FG (2016) Ductility of nanostructured bainite. Metals 6(12):302–321

    Article  Google Scholar 

  49. Caballero FG, Miller MK, Garcia-Mateo C (2010) Tracking solute atoms during bainite reaction in a nanocrystalline steel. Mater Sci Technol 26(8):889–898

    Article  CAS  Google Scholar 

  50. Caballero FG, Yen HW, Miller MK, Yang JR, Cornide J, Garcia-Mateo C (2011) Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels. Acta Mater 59(15):6117–6123

    Article  CAS  Google Scholar 

  51. Garcia-Mateo C, Caballero FG, Capdevila C, Andres C (2009) Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry. Scr Mater 61(9):855–858

    Article  CAS  Google Scholar 

  52. Avishan B, Yazdani S, Caballero F, Wang T, Garcia-Mateo C (2015) Characterisation of microstructure and mechanical properties in two different nanostructured bainitic steels. Mater Sci Technol 31(12):1508–1520

    Article  CAS  Google Scholar 

  53. Bhadeshia HKDH (2006) Honeycombe RWK steel, microstructure and properties. Butterworths-Heinemann (Elsevier), Amsterdam

    Google Scholar 

  54. Garcia-Mateo C, Caballero FG, Sourmail T, Kuntz M, Cornide J, Smanio V, Elvira R (2012) Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt% silicon. Mater Sci Eng A 549:185–192

    Article  CAS  Google Scholar 

  55. Morales-Rivas L, Yen H-W, Huang B-M, Kuntz M, Caballero FG, Yang J-R, Garcia-Mateo C (2015) Tensile response of two nanoscale bainite composite-like structures. JOM 67(10):2223–2235

    Article  CAS  Google Scholar 

  56. Yu HY, Kai GY, De Jian M (2006) Transformation behavior of retained austenite under different deformation modes for low alloyed TRIP-assisted steels. Mater Sci Eng A 441(1):331–335

    Article  Google Scholar 

  57. Khare S, Lee K, Bhadeshia HKDH (2010) Carbide-Free Bainite: Compromise between Rate of Transformation and Properties. Metall Mater Trans A 41(4):922–928

    Article  Google Scholar 

  58. Garcia-Mateo C, Peet M, Caballero FG, Bhadeshia HKDH (2004) Tempering of hard mixture of bainitic ferrite and austenite. Mater Sci Technol 20(7):814–818

    Article  CAS  Google Scholar 

  59. Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials. John Wiley & Sons Inc

Download references

Acknowledgments

Authors are grateful to Sahand University of Technology for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Behzad Avishan or Sasan Yazdani.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avishan, B., Sefidgar, A. & Yazdani, S. High strain rate deformation of nanostructured super bainite. J Mater Sci 54, 3455–3468 (2019). https://doi.org/10.1007/s10853-018-3026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3026-5

Keywords

Navigation