Skip to main content
Log in

A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Morphology is a crucial factor in determining the chemical, optical, and electrical properties of nanoscale materials. In this work, we utilized a facile room-temperature deposition method to synthesize three-dimensional (3D) coral-like Ag2S nanostructures. The formation mechanism of 3D coral-like Ag2S nanostructures was proposed by tracking the reaction process. In comparison with 0D Ag2S nanoparticles and 1D Ag2S nanowires of similar size, 3D coral-like Ag2S nanostructures exhibit higher pore volume, photocatalytic activity and cyclic stability for degradation of methyl orange (MO). Surface photovoltage measurement, electrochemical impedance spectroscopy, and Mott–Schottky analysis showed that compared to other Ag2S nanostructures, 3D coral-like Ag2S nanostructures have the strongest surface photovoltaic response, longest carrier lifetime, and highest carrier density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Chen X, Shen S, Guo L (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  3. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  4. Asay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763

    Article  CAS  Google Scholar 

  5. Zhang GK, Ding XM, He FS (2008) Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite. Langmuir 24:1026–1030

    Article  Google Scholar 

  6. Khanchandani S, Srivastava PK, Kumar S (2014) Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag2S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis. Inorg Chem 53:8902–8912

    Article  CAS  Google Scholar 

  7. Yu C, Wei L, Zhou WA (2016) Visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation. Chemosphere 157:250–261

    Article  CAS  Google Scholar 

  8. Shi Y, Chen Y, Tian G (2015) Hierarchical Ag/Ag2S/CuS ternary heterostructure composite as an efficient visible-light photocatalyst. Chem Cat Chem 7:1684–1690

    CAS  Google Scholar 

  9. Liu T, Liu B, Yang L (2017) RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl Catal B 204:593–601

    Article  CAS  Google Scholar 

  10. Jiang W, Wu Z, Yue X (2015) Photocatalytic performance of Ag2S under irradiation with visible and near-infrared light and its mechanism of degradation. RSC Adv 5:24064–24071

    Article  CAS  Google Scholar 

  11. Xu D, Jiang T, Wang D (2014) pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl Mater Interfaces 6:9321–9327

    Article  CAS  Google Scholar 

  12. Zhou Y, Huang Y, Li D (2013) Three-dimensional sea-urchin-like hierarchical TiO2 microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity. Mater Res Bull 48:2420–2425

    Article  CAS  Google Scholar 

  13. Nersisyan HH, Lee JH, Ding JR (2017) Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: current trends and future perspectives. Prog Energy Combust Sci 63:79–118

    Article  Google Scholar 

  14. Shen Q, Jiang L, Zhang H (2008) Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392

    Article  CAS  Google Scholar 

  15. Yang F, Xi J, Gan LY, Wang Y, Lu SW, Ma W, Zhao Y (2016) Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays. J Colloid Interface Sci 464:1–9

    Article  CAS  Google Scholar 

  16. Jia YF, Yang F, Cai FG, Cheng CH, Zhao Y (2013) Photoelectrochemical and charge transfer properties of SnS/TiO2 heterostructure nanotube arrays. Electron Mater Lett 9:287–291

    Article  CAS  Google Scholar 

  17. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge transfer at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

  18. Dong L, Chu Y, Liu Y (2008) Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solutions. J Colloid Interface Sci 317:485–492

    Article  CAS  Google Scholar 

  19. Yang W, Xie T, Jiang T (2013) Facile preparation of Ag2S nanoparticles with broad photoelectric response region. Colloids Surf A Physicochem Eng Asp 433:55–58

    Article  CAS  Google Scholar 

  20. Ahmad S, Isab AA, Perzanowski HP (2002) Silver(I) complexes of thiourea. Transit Met Chem 27:782–785

    Article  CAS  Google Scholar 

  21. Patrito EM, Cometto FP, Paredes-Olivera P (2004) Quantum mechanical investigation of thiourea adsorption on Ag (111) considering electric field and solvent effects. J Phys Chem B 108:15755–15769

    Article  CAS  Google Scholar 

  22. Wang F, Richards VN, Shields SP (2013) Kinetics and mechanisms of aggregative nanocrystal growth. Chem Mater 26:5–21

    Article  Google Scholar 

  23. Qin D, Zhang L, Du X (2015) Fabrication of worm-like Ag2S nanocrystals under mediation of protein. Bull Mater Sci 38:1665–1671

    Article  CAS  Google Scholar 

  24. Yang L, Yang H, Yang Z (2008) Observation of rotated-oriented attachment during the growth of Ag2S nanorods under mediation of protein. J Phys Chem B 112:9795–9801

    Article  CAS  Google Scholar 

  25. Wang D, Kako T, Ye J (2008) Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J Am Chem Soc 130:2724–2725

    Article  CAS  Google Scholar 

  26. Bi Y, Hu H, Jiao Z (2012) Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties. Phys Chem Chem Phys 14:14486–14488

    Article  CAS  Google Scholar 

  27. Tong H, Ouyang S, Bi Y (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  CAS  Google Scholar 

  28. Zhao Y, Zhang X, Zhai J (2008) Enhanced photocatalytic activity of hierarchically micro-/nano-porous TiO2 films. Appl Catal B 83:24–29

    Article  CAS  Google Scholar 

  29. Zhang Z, Xiao F, Guo Y (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Interfaces 5:2227–2233

    Article  CAS  Google Scholar 

  30. Sarkar D, Ghosh CK, Mukherjee S (2012) Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Appl Mater Interfaces 5:331–337

    Article  Google Scholar 

  31. Dong F, Wang H, Wu Z (2009) One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J Phys Chem C 113:16717–16723

    Article  CAS  Google Scholar 

  32. Liang Q, Ma W, Shi Y (2012) Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 14:2966–2973

    Article  CAS  Google Scholar 

  33. Ho W, Jimmy CY, Lee S (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 10:1115–1117

    Article  Google Scholar 

  34. Li W, Liu J, Zhao DY (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:16023

    Article  CAS  Google Scholar 

  35. Tanev PT, Pinnavaia TJ (1996) Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science 271:1267–1269

    Article  CAS  Google Scholar 

  36. Zhang Z, Yu JC (2003) A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun 16:2078–2079

    Article  Google Scholar 

  37. Zhou X, Zhang G, Shao C (2017) Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceram Int 43:15699–15707

    Article  CAS  Google Scholar 

  38. Jin LQ, Sun XJ, Shang J, Cai W, Xu Z (2003) Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol Energy Mater Sol Cells 79:133–151

    Article  Google Scholar 

  39. Wang P, Huang B, Qin X (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47:7931–7933

    Article  CAS  Google Scholar 

  40. Zhang H, Fan X, Quan X (2011) Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environ Sci Technol 45:5731–5736

    Article  CAS  Google Scholar 

  41. Kuhlmann W, Henzler M (1980) Non-equilibrium surface state properties at clean cleaved silicon surface as measured by surface photovoltage. Surf Sci 99:45–58

    Article  CAS  Google Scholar 

  42. Cai FG, Yang F, Jia YF, Ke C, Cheng CH, Zhao Y (2013) Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J Mater Sci 48:6001–6007. https://doi.org/10.1007/s10853-013-7396-4

    Article  CAS  Google Scholar 

  43. Ma WL, Yang F, Wang YS, Chen JR, Yuan L, Xie D, Zhao Y, Zhang Y, Peng JF (2017) Surface photovoltage inversion and photocatalytic properties of PbI2 microcrystals under sub-bandgap illumination. J Mater Sci 52:9696–9708. https://doi.org/10.1007/s10853-017-1123-5

    Article  CAS  Google Scholar 

  44. Liu B, Nakata K, Sakai M (2011) Mesoporous TiO2 core–shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism. Langmuir 27:8500–8508

    Article  CAS  Google Scholar 

  45. Zhang XL, Zhang Z, Chen D (2012) Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chem Commun 48:9885–9887

    Article  CAS  Google Scholar 

  46. Dong F, Ou M, Jiang Y (2014) Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind Eng Chem Res 53:2318–2330

    Article  CAS  Google Scholar 

  47. Baram N, Ein-Eli Y (2010) Electrochemical impedance spectroscopy of porous TiO2 for photocatalytic applications. J Phys Chem C 114:9781–9790

    Article  CAS  Google Scholar 

  48. Choi SK, Kim S, Lim SK (2010) Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J Phys Chem C 114:16475–16480

    Article  CAS  Google Scholar 

  49. Park Y, Kim W, Monllor-Satoca D (2012) Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2. J Phys Chem Lett 4:189–194

    Article  Google Scholar 

  50. Hartmann P, Lee DK, Smarsly BM (2010) Mesoporous TiO2: comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4:3147–3154

    Article  CAS  Google Scholar 

  51. Lv M, Zheng D, Ye M (2013) Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ Sci 6:1615–1622

    Article  CAS  Google Scholar 

  52. Liu Z, Ji G, Guan D (2015) Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J Colloid Interface Sci 457:1–8

    Article  CAS  Google Scholar 

  53. Ismail AA, Bahnemann DW (2011) Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid. J Phys Chem C 115:5784–5791

    Article  CAS  Google Scholar 

  54. Lana-Villarreal T, Monllor-Satoca D, Rodes A (2007) Photocatalytic behavior of suspended and supported semiconductor particles in aqueous media: fundamental aspects using catechol as model molecule. Catal Today 129:86–95

    Article  CAS  Google Scholar 

  55. Warren SC, Voïtchovsky K, Dotan H (2013) Identifying champion nanostructures for solar water-splitting. Nat Mater 12:842

    Article  CAS  Google Scholar 

  56. Yang X, Wolcott A, Wang G (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

    Article  CAS  Google Scholar 

  57. Cardon F, Gomes WP (1978) On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott–Schottky plot. J Phys D Appl Phys 11:L63

    Article  CAS  Google Scholar 

  58. Omeiri S, Hadjarab B, Trari M (2011) Photoelectrochemical properties of anodic silver sulphide thin films. Thin Solid Films 519:4277–4281

    Article  CAS  Google Scholar 

  59. Ye M, Gong J, Lai Y (2012) High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J Am Chem Soc 134:15720–15723

    Article  CAS  Google Scholar 

  60. Wang Y, Zhang YY, Tang J (2013) Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano 7:9375–9383

    Article  CAS  Google Scholar 

  61. Jiang T, Xie T, Chen L (2013) Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale 5:2938–2944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by National Magnetic Confinement Fusion Science Program (2011GB112001, 2013GB110001); Program of International S&T Cooperation (2013DFA51050); National Natural Science Foundation of China (51271155, 51377138); Fundamental Research Funds for the Central Universities (2682013CX004, SWJTU11ZT31, 2682013CX004); Science Foundation of Sichuan Province (2011JY0031, 2011JY0130); New Teachers’ Fund for Doctor Stations, Ministry of Education (20120184120024); the 863 Program (No. 2014AA032701); and Analytical & Testing Center of the Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Yong Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Lu, S., Yang, F. et al. A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. J Mater Sci 54, 3174–3186 (2019). https://doi.org/10.1007/s10853-018-3051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3051-4

Keywords

Navigation