Skip to main content

Advertisement

Log in

Bismuth oxide-based nanocomposite for high-energy electron radiation shielding

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel polymer-based nanocomposite was fabricated to investigate its shielding properties against high-energy electron radiation for potential applications in space industry. Bismuth oxide (Bi2O3) nanoparticles and multi-walled carbon nanotubes (MWCNT) were added to poly (methyl methacrylate) (PMMA) to fabricate the nanocomposite. Radiation shielding efficiency of different samples, pure PMMA, PMMA/MWCNT, and PMMA/MWCNT/Bi2O3, was characterized and compared with aluminum (Al). The electron-beam attenuation characteristics show that PMMA/MWCNT/Bi2O3 nanocomposite was 37% lighter in comparison with Al at the same radiation shielding effectiveness in electron energy range of 9–20 MeV. Furthermore, mechanical and thermal properties indicate that PMMA/MWCNT/Bi2O3 can achieve significantly improved tensile strength, initial decomposition temperature, and glass transition temperature over pure PMMA. The stabled thermal properties, chemical structures, and morphology of all materials before and after electron irradiation lead to excellent radiation resistance of PMMA and nanocomposite. In conclusion, the proposed nanocomposite is a promising material for high-energy, electron-beam shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Grossman E, Gouzman I (2003) Space environment effects on polymers in low earth orbit. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 208:48–57

    Article  CAS  Google Scholar 

  2. Lin R (2000) Energetic electrons accelerated in solar particle events. In: AIP conference proceedings, vol 528, no. 1, pp 32–38. AIP

  3. Webber W, Villa T (2017) The galactic cosmic ray electron spectrum from 3 to 70 MeV measured by Voyager 1 beyond the heliopause, what this tells us about the propagation of electrons and nuclei in and out of the galaxy at low energies. arXiv preprint arXiv:1703.10688

  4. Charlesby A (2013) Atomic radiation and polymers: international series of monographs on radiation effects in materials. Elsevier, Amsterdam

    Google Scholar 

  5. Bolton S et al (2002) Ultra-relativistic electrons in Jupiter’s radiation belts. Nature 415(6875):987

    Article  CAS  Google Scholar 

  6. Smith DM et al (2002) The RHESSI spectrometer. Sol Phys 210(1–2):33–60

    Article  CAS  Google Scholar 

  7. Cucinotta FA (2015) Review of NASA approach to space radiation risk assessments for Mars exploration. Health Phys 108(2):131–142

    Article  CAS  Google Scholar 

  8. Pia MG et al (2009) PIXE simulation with Geant4. IEEE Trans Nucl Sci 56(6):3614–3649

    Article  CAS  Google Scholar 

  9. International Commission on Radiation Units and Measurements (1984) Radiation dosimetry: electron beams with energies between 1 and 50 MeV; 2nd reprint. International Commission on Radiation Units and Measurements, Bethesda

    Google Scholar 

  10. Dapor M (2003) Electron-beam interactions with solids: application of the Monte Carlo method to electron scattering problems. Springer, Berlin

    Book  Google Scholar 

  11. Adams J Jr et al (2005) Revolutionary concepts of radiation shielding for human exploration of space

  12. Chandrika BM, Manjunatha HC, Sridhar KN, Hanumantharayappa C (2018) Bremsstrahlung shielding parameters in polymer concretes. Radiat Effects Defects Solids. 26:1–3

    Google Scholar 

  13. Thibeault SA, Kang JH, Sauti G, Park C, Fay CC, King GC (2015) Nanomaterials for radiation shielding. MRS Bull 40(10):836–841

    Article  CAS  Google Scholar 

  14. Li Z, Nambiar S, Zheng W, Yeow J (2013) PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Mater Lett 108:79–83

    Article  CAS  Google Scholar 

  15. Nambiar S, Yeow JT (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Interfaces 4(11):5717–5726

    Article  CAS  Google Scholar 

  16. Najafi E, Shin K (2005) Radiation resistant polymer–carbon nanotube nanocomposite thin films. Colloids Surf A Physicochem Eng Asp 257:333–337

    Article  Google Scholar 

  17. Bhowmik S, Benedictus R, Poulis H, Bonin H, Bui VT (2009) High-performance nanoadhesive bonding of space-durable polymer and its performance under space environments. J Spacecr Rockets 46(1):218–224

    Article  CAS  Google Scholar 

  18. Hashimoto N, Oie S, Homma H, Ohnuki S (2014) In situ observations of microstructure evolution in electron-irradiated multi-wall carbon nanotubes. Mater Trans 55(3):458–460

    Article  CAS  Google Scholar 

  19. Chen S et al (2014) Polymer nanocomposite for space applications. In: 2014 IEEE 14th international conference on nanotechnology (IEEE-NANO), pp 685–688. IEEE

  20. Li L, Su J, Zhu X (2016) Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation. Appl Phys A 122(10):912

    Article  Google Scholar 

  21. Li Z et al (2016) PMMA/MWCNT nanocomposite for proton radiation shielding applications. Nanotechnology 27(23):234001

    Article  Google Scholar 

  22. Yang J, Li X, Liu C, Rui E, Wang L (2015) Effects of electron irradiation on LDPE/MWCNT composites. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 365:55–60

    Article  CAS  Google Scholar 

  23. McCaffrey J, Tessier F, Shen H (2012) Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med Phys 39(7):4537–4546

    Article  CAS  Google Scholar 

  24. Cho J, Kim M, Rhim J (2015) Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum. Radiat Effects Defects Solids 170(7–8):651–658

    Article  CAS  Google Scholar 

  25. Ambika MR, Nagaiah N, Suman S (2017) Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. J Appl Polym Sci 134(13):44657

    Article  Google Scholar 

  26. Cengel KA, Diffenderfer ES, Avery S, Kennedy AR, McDonough J (2010) Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure. Radiat Environ Biophys 49(4):715–721

    Article  Google Scholar 

  27. Nambiar S, Osei EK, Yeow JTW (2013) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci 127(6):4939–4946

    Article  CAS  Google Scholar 

  28. Yao Y et al (2016) Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive. Radiat Phys Chem 127:188–193

    Article  CAS  Google Scholar 

  29. Maghrabi HA, Vijayan A, Deb P, Wang L (2016) Bismuth oxide-coated fabrics for X-ray shielding. Text Res J 86(6):649–658

    Article  CAS  Google Scholar 

  30. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961

    Article  Google Scholar 

  31. Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel–poly (methyl methacrylate) composites: experiments and modeling. Carbon 81:396–404

    Article  CAS  Google Scholar 

  32. Shen JN, Yu CC, Ruan HM, Gao CJ, Van der Bruggen B (2013) Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization. J Membr Sci 442:18–26

    Article  CAS  Google Scholar 

  33. Weng B, Xu F, Salinas A, Lozano K (2014) Mass production of carbon nanotube reinforced poly (methyl methacrylate) nonwoven nanofiber mats. Carbon 75:217–226

    Article  CAS  Google Scholar 

  34. Wang SX, Jin CC, Qian WJ (2014) Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd 615:12–17

    Article  CAS  Google Scholar 

  35. Trivedi MK et al (2015) Evaluation of atomic, physical, and thermal properties of bismuth oxide powder: an impact of biofield energy treatment. Am J Nano Res Appl 3(6):94–98

    CAS  Google Scholar 

  36. Thirsk R, Kuipers A, Mukai C, Williams D (2009) The space-flight environment: the International Space Station and beyond. Can Med Assoc J 180(12):1216–1220

    Article  Google Scholar 

  37. Martel-Estrada S, Santos-Rodríguez E, Olivas-Armendáriz I, Cruz-Zaragoza E, Martínez-Pérez C (2014) The effect of radiation on the thermal properties of chitosan/mimosa tenuiflora and chitosan/mimosa tenuiflora/multiwalled carbon nanotubes (MWCNT) composites for bone tissue engineering. In: AIP conference proceedings, vol 1607, no. 1, pp 55–64. AIP

  38. Varela-Rizo H, Bittolo-Bon S, Rodriguez-Pastor I, Valentini L, Martin-Gullon I (2012) Processing and functionalization effect in CNF/PMMA nanocomposites. Compos Part A Appl Sci Manuf 43(4):711–721

    Article  CAS  Google Scholar 

  39. Velasco-Santos C, Martínez-Hernández AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15(23):4470–4475

    Article  CAS  Google Scholar 

  40. Petersen EJ et al (2014) Methods to assess the impact of UV irradiation on the surface chemistry and structure of multiwall carbon nanotube epoxy nanocomposites. Carbon 69:194–205

    Article  CAS  Google Scholar 

  41. Singh D et al (2010) Radiation induced modification of dielectric and structural properties of Cu/PMMA polymer composites. J Non Cryst Solids 356(18–19):856–863

    Article  CAS  Google Scholar 

  42. Suarez JC, Mano EB, Da Costa Monteiro EE, Tavares MI (2002) Influence of γ-irradiation on poly (methyl methacrylate). J Appl Polym Sci 85(4):886–895

    Article  CAS  Google Scholar 

  43. Kratky P et al Impact of irradiation dose on mechanical properties of PMMA. Latest Trends Syst 1:290

  44. Arshak K, Korostynska O (2006) Advanced materials and techniques for radiation dosimetry. Artech House, Boston

    Google Scholar 

  45. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56(13):2929–2936

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) and Canadian Research Chairs (CRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. W. Yeow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Nambiar, S., Li, Z. et al. Bismuth oxide-based nanocomposite for high-energy electron radiation shielding. J Mater Sci 54, 3023–3034 (2019). https://doi.org/10.1007/s10853-018-3063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3063-0

Keywords

Navigation