Skip to main content
Log in

Fabrication of core–shell TiO2@CuS nanocomposite via a bifunctional linker-assisted synthesis and its photocatalytic performance

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Monodisperse anatase TiO2 microspheres were prepared by a modified sol–gel method and then coupled with CuS nanoparticles (NPs) to prepare non-core–shell TiO2/CuS composite (denoted as TiO2/CuS) and core–shell TiO2@CuS composite (denoted as TiO2@CuS), respectively, by two different fabricating methods, namely direct deposition and bifunctional linker-assisted assembly. The morphological, structural, and optical properties of both the TiO2/CuS and TiO2@CuS composites were characterized using TEM, HR-TEM, EDS mapping images, XRD, XPS, and UV–Vis DRS. Their visible-light-driven photocatalytic performance for degradation of methylene blue was comparatively studied. Results indicate: (1) as bifunctional linker between CuS and TiO2, 2,3-dimercapto-succinic acid (DMSA) enables CuS NPs to be anchored tightly onto the DMSA-functionalize TiO2 surface with small particle size, narrow size distribution, conformal coverage, intimate contact, and strong interaction with TiO2 to form TiO2@CuS. (2) Without using DMSA, the directly deposited CuS NPs tend to aggregate and are loaded randomly and loosely on the bare TiO2 without forming well-defined heterojunction due to the lattice mismatch between CuS and TiO2, even some CuS NPs are detached from the surface of TiO2 and thus TiO2/CuS was obtained. (3) TiO2@CuS exhibits superior synergistic effect and corresponding photocatalytic activity to TiO2/CuS, and the significant difference between their photocatalytic properties is mainly attributed to their distinct microstructure caused by the different assembling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 2

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Liu PF, Li YF, Hu YJ, Hou XY, Li CZ (2015) Macro-mesoporous TiO2 microspheres for highly efficient dye-sensitized solar cells. Ind Eng Chem Res 54:6692–6697

    Article  CAS  Google Scholar 

  3. Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M (2014) Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8:2261–2268

    Article  CAS  Google Scholar 

  4. Liu MC, Xue F, Wang XX, Fu WL, Wang Y, Lu YJ, Li NX (2018) Conformal deposition of atomic TiO2 layer on chalcogenide nanorod with excellent activity and durability towards solar H2 generation. Chem Eng J 341:335–343

    Article  CAS  Google Scholar 

  5. Yang YQ, Liu G, Irvine JTS, Cheng HM (2016) Enhanced photocatalytic H2 production in core–shell engineered rutile TiO2. Adv Mater 28:5850–5856

    Article  CAS  Google Scholar 

  6. Yang S, Huang N, Jin YM, Zhang HQ, Su YH, Yang HG (2015) Crystal shape engineering of anatase TiO2 and its biomedical applications. CrystEngComm 17:6617–6631

    Article  CAS  Google Scholar 

  7. Wu SL, Weng ZY, Liu XM, Yeung KWK, Chu PK (2014) Functionalized TiO2 based nanomaterials for biomedical applications. Adv Funct Mater 24:5464–5481

    Article  CAS  Google Scholar 

  8. Wang WJ, Huang GC, Yu JC, Wong PK (2015) Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms. J Environ Sci 34:232–247

    Article  Google Scholar 

  9. Dong SY, Feng JL, Fan MH, Pi YQ, Hu LM, Han X, Liu ML, Sun JY, Sun JH (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light responsive photocatalysts: a review. RSC Adv 5:14610–14630

    Article  CAS  Google Scholar 

  10. Qu YQ, Duan XF (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42:2568–2580

    Article  CAS  Google Scholar 

  11. Etacheri V, Valentin CD, Schneiderd J, Bahnemannd D, Pillai SC (2015) Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C 25:1–29

    Article  CAS  Google Scholar 

  12. Dong HR, Zeng GM, Tang L, Fan CZ, Zhang C, He XX, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146

    Article  CAS  Google Scholar 

  13. Park J, Kim H, Moon G, Choi W (2016) Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci 9:411–433

    Article  CAS  Google Scholar 

  14. Zhao D, Yang CF (2016) Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renew Sust Energ Rev 54:1048–1059

    Article  CAS  Google Scholar 

  15. Nakamura R, Makuta S, Tachibana Y (2015) Electron injection dynamics at the SILAR deposited CdS quantum dot/TiO2 interface. J Phys Chem C 119:20357–20362

    Article  CAS  Google Scholar 

  16. Zhao K, Pan ZX, Zhong XH (2016) Charge recombination control for high efficiency quantum dot sensitized solar cells. J Phys Chem Lett 7:406–417

    Article  CAS  Google Scholar 

  17. Zhang ZG, Shi CW, Chen JJ, Xiao GN, Li L (2017) Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl Surf Sci 410:8–13

    Article  CAS  Google Scholar 

  18. Zhang X, Li X, Shao C, Li J, Zhang M, Zhang P, Wang K, Lu N, Liu Y (2013) One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. J Hazard Mater 260:892–900

    Article  CAS  Google Scholar 

  19. Kim J, Kang M (2012) High photocatalytic hydrogen production over the band gap-tuned urchin-like Bi2S3-loaded TiO2 composites system. Int J Hydrogen Energy 37:8249–8256

    Article  CAS  Google Scholar 

  20. Sun M, Chen G, Zhang Y, Wei Q, Ma Z, Du B (2012) Efficient degradation of azo dyes over Sb2S3/TiO2 heterojunction under visible light irradiation. Ind Eng Chem Res 51:2897–2903

    Article  CAS  Google Scholar 

  21. Wang C, Lin H, Liu Z, Wu J, Xu Z, Zhang C (2016) Controlled Formation of TiO2/MoS2 core–shell heterostructures with enhanced visible-light photocatalytic activities. Part Part Syst Charact 33:221–227

    Article  CAS  Google Scholar 

  22. Zhang WP, Xiao XY, Li Y, Zeng XY, Zheng LL, Wan CX (2016) Liquid exfoliation of layered metal sulphide for enhanced photocatalytic activity of TiO2 nanoclusters and DFT study. RSC Adv 6:33705–33712

    Article  CAS  Google Scholar 

  23. Shen QM, Zhao XM, Zhou SW, Hou WH, Zhu JJ (2011) ZnO/CdS hierarchical nanospheres for photoelectrochemical sensing of Cu2+. J Phys Chem C 115:17958–17964

    Article  CAS  Google Scholar 

  24. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599

    Article  CAS  Google Scholar 

  25. Jiang DH, Hu WB, Wang HR, Shen BB, Deng YD (2012) Synthesis, formation mechanism and photocatalytic property of nanoplate-based copper sulfide hierarchical hollow sphere. Chem Eng J 189–190:443–450

    Article  Google Scholar 

  26. Kundu J, Pradhan D (2014) Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS Appl Mater Interfaces 6:1823–1834

    Article  CAS  Google Scholar 

  27. Jia L, Ji HM, Lai JY, Wang J, Chen HY, Zheng XR, Liu H, Jin ZG (2017) Morphology, structure and optical absorption properties of copper sulfides by different TEG based solution processing. Mater Des 123:39–45

    Article  CAS  Google Scholar 

  28. Yu SY, Liu JC, Zhou Y, Webster RD, Yan XL (2017) Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2–CuS composites. ACS Sustain Chem Eng 5:1347–1357

    Article  CAS  Google Scholar 

  29. Chandra M, Bhunia K, Pradhan D (2018) Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting. Inorg Chem 57:4524–4533

    Article  CAS  Google Scholar 

  30. Gao LG, Du JW, Ma TL (2017) Cysteine-assisted synthesis of CuS-TiO2 composites with enhanced photocatalytic activity. Ceram Int 43:9559–9563

    Article  CAS  Google Scholar 

  31. Hou GH, Cheng ZQ, Kang LJ, Xu XJ, Zhang FL, Yang HJ (2015) Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis. CrystEngComm 17:5496–5501

    Article  CAS  Google Scholar 

  32. Tanaka S, Nogami D, Tsuda N, Miyake Y (2009) Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. J Colloid Interface Sci 334:188–194

    Article  CAS  Google Scholar 

  33. Li F, Wu J, Qin Q, Li Z, Huang X (2010) Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technol 198:267–274

    Article  CAS  Google Scholar 

  34. Zhang YY, Guo SB, Ma JQ, Ge HG (2014) Preparation, characterization, catalytic performance and antibacterial activity of Ag photodeposited on monodisperse ZnO submicron spheres. J Sol-Gel Sci Technol 72:171–178

    Article  CAS  Google Scholar 

  35. Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z (2013) High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int J Hydrogen Energy 38:10739–10745

    Article  CAS  Google Scholar 

  36. Gerischer H, Heller A (1991) The role of oxygen in photooxidation of organic molecules on semiconductor particles. J Phys Chem 95:5261–5267

    Article  CAS  Google Scholar 

  37. Khanchandani S, Kumar S, Ganguli AK (2016) Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis. ACS Sustain Chem Eng 4:1487–1499

    Article  CAS  Google Scholar 

  38. Zhang L, Wang X, Zou J, Liu Y, Wang J (2015) DMSA-coated iron oxide nanoparticles greatly affect the expression of genes coding cysteine-rich proteins by their DMSA coating. Chem Res Toxicol 28:1961–1974

    Article  CAS  Google Scholar 

  39. Yantasee W, Warner CL, Sangvanich T, Addleman RS (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119

    Article  CAS  Google Scholar 

  40. Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW, Lee WI, Hur NH (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun. https://doi.org/10.1039/b612572g

    Article  Google Scholar 

  41. Dibbell RS, Soja GR, Hoth RM, Watson DF (2007) Photocatalytic patterning of monolayers for the site-selective deposition of quantum dots onto TiO2 surfaces. Langmuir 23:3432–3439

    Article  CAS  Google Scholar 

  42. Lo SS, Mirkovic T, Chuang CH, Burda C, Scholes GD (2011) Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv Mater 23:180–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shaanxi province natural science foundation research project (No. 2018JM2032), Key Scientific Research Program of Shaanxi Provincial Education Department (Key Laboratory, Program No. 17JS025) and National Natural Science Foundation of China (No. 21502109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Du, Q., Ge, H. et al. Fabrication of core–shell TiO2@CuS nanocomposite via a bifunctional linker-assisted synthesis and its photocatalytic performance. J Mater Sci 54, 2928–2939 (2019). https://doi.org/10.1007/s10853-018-3054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3054-1

Keywords

Navigation