Skip to main content

Advertisement

Log in

Reliable brazing of SiBCN ceramic and TC4 alloy using AgCuTi filler with the assist of laser melting deposited FGM layers

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When the SiBCN ceramic and TC4 alloy were brazed using AgCuTi filler, the coefficient of thermal expansion (CTE) mismatch between the SiBCN and TC4, as well as the formation of brittle Cu2Ti due to the vigorous reaction of TC4 and AgCuTi filler, produced high residual stress in the joint. To relieve the residual stress, TC4 was coated by SiC and TiB2 reinforced TC4-based composite layers (named as SiC Layer and TiB2 Layer) through laser melting deposition technology before the brazing process. The composite layers could be treated as functionally graded materials layers (FGM layers). Afterward, the brazing of the SiBCN and TC4 coated with the FGM layers was investigated. The FGM layers induced the CTE to be graded from the TC4 to the SiBCN, minimizing the residual stress in the joint. The SiC in the SiC Layer reduced the contact area of AgCuTi and TC4. The reaction of AgCuTi and TC4 was restrained, so that the Cu2Ti volume in the brazing part decreased. Therefore, the residual stress generated in the SiBCN was relieved, and the joint strength increased. With the increase of the brazing temperature, the interfacial reaction was promoted. The reaction layer adjacent to the SiBCN grew, and the Cu2Ti volume in the joint enlarged. When the joint was brazed with the assist of the FGM layers at 850 °C for 5 min, the maximum joint strength reached 38 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Indulekha K, Rajeev RS, Ninan KN, Gouri C (2018) Cured polysiloxane-boron nitride composite as novel precursor for SiBCN nanostructures. Ceram Int 44:7134–7140

    Article  CAS  Google Scholar 

  2. Li DX, Yang ZH, Jia DC, Duan XM, Zhou Y, Yu DL, Tian YJ, Wang ZH, Liu YL (2018) Role of boron addition on phase composition, microstructural evolution and mechanical properties of nanocrystalline SiBCN monoliths. J Eur Ceram Soc 38:1179–1189

    Article  CAS  Google Scholar 

  3. Choi J, Hayashi N, Kato T, Kawaguchi M (2013) Mechanical properties and thermal stability of SiBCN films prepared by ion beam assisted sputter deposition. Diamond Relat Mater 34:95–99

    Article  CAS  Google Scholar 

  4. Zhang YJ, Yin XW, Ye F, Kong L (2014) Effects of multi-walled carbon nanotubes on the crystallization behavior of PDCs-SiBCN and their improved dielectric and EM absorbing properties. J Eur Ceram Soc 34:1053–1061

    Article  CAS  Google Scholar 

  5. Li DX, Wu DX, Yang ZH, Zhou YY, Wang SJ, Duan XM, Jia DC, Zhu QS, Zhou Y (2016) Effects of in situ amorphous graphite coating on ablation resistance of SiC fiber reinforced SiBCN ceramics in an oxyacetylene flame. Corros Sci 113:31–45

    Article  CAS  Google Scholar 

  6. Fojt J, Filip V, Joska L (2015) On the increasing of adhesive strength of nanotube layers on beta titanium alloys for medical applications. Appl Surf Sci 355:52–58

    Article  CAS  Google Scholar 

  7. Li X, Li JL, Liao ZX, Jin F, Zhang FS, Xiong JT (2016) Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds. Mater Des 99:26–36

    Article  CAS  Google Scholar 

  8. Wang Y, Jiao M, Yang ZW, Wang DP, Liu YC (2018) Vacuum brazing of Ti2AlNb and TC4 alloys using Ti–Zr–Cu–Ni and Ti–Zr–Cu–Ni + Mo filler metals: microstructural evolution and mechanical properties. Arch Civ Mech Eng 18:546–556

    Article  Google Scholar 

  9. Beura VK, Xavier V, Venkateswaran T, Kulkarni KN (2018) Interdiffusion and microstructure evolution during brazing of austenitic martensitic stainless steel and aluminum–bronze with Ag–Cu–Zn based brazing filler material. J Alloys Compd 740:852–862

    Article  CAS  Google Scholar 

  10. Liu D, Niu HW, Zhou YH, Song XG, Tang DY, Feng JC (2015) Brazing continuous carbon fiber reinforced Li2O-Al2O3-SiO2 ceramic matrix composites to Ti-6Al-4V alloy using Ag–Cu–Ti active filler metal. Mater Des 87:42–48

    Article  CAS  Google Scholar 

  11. Xiong JH, Huang JH, Zhang H, Zhao XK (2010) Brazing of carbon fiber reinforced SiC composite and TC4 using Ag–Cu–Ti active brazing alloy. Mater Sci Eng A 527:1096–1101

    Article  Google Scholar 

  12. Pan R, Kovacevic S, Lin TS, He P, Sekulic DP, Mesarovic SD, Yang ZH, Shen YX, Wei HM (2016) Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag–Cu–Ti + Mo composite interlayer. Mater Des 99:193–200

    Article  CAS  Google Scholar 

  13. Song XG, Cao J, Wang YF, Feng JC (2007) Effect of Si3N4-particles addition in Ag–Cu–Ti filler alloy on Si3N4/TiAl brazed joint. Mater Sci Eng, A 454–455:322–327

    Google Scholar 

  14. Shi JM, Zhang LX, Chang Q, Sun Z, Feng JC (2018) Strengthening the ZrC-SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers. Ceram Int 44:11060–11069

    Article  CAS  Google Scholar 

  15. Song XR, Li HJ, Zeng XR (2016) Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy. J Alloys Compd 664:175–180

    Article  CAS  Google Scholar 

  16. Dai XY, Cao J, Liu JQ, Wang D, Feng JC (2015) Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag–Cu filler metal. Mater Sci Eng A 646:182–189

    Article  CAS  Google Scholar 

  17. Shi JM, Feng JC, Tian XY, Liu H, Zhang LX (2017) Interfacial microstructure and mechanical property of ZrC-SiC ceramic and Ti6Al4V joint brazed with AgCuTi alloy. J Eur Ceram Soc 37:2769–2778

    Article  CAS  Google Scholar 

  18. Liu D, Niu HW, Liu JH, Song XG, Xia L, Feng JC (2016) Effect of processing parameters on the formation of Cf/LAS composites/AgCuTi/TC4 brazed joint. Mater Charact 120:249–256

    Article  CAS  Google Scholar 

  19. Pietrzak K, Kaliński D, Chmielewski M (2007) Interlayer of Al2O3–Cr functionally graded material for reduction of thermal stresses in alumina–heat resisting steel joints. J Eur Ceram Soc 27:1281–1286

    Article  CAS  Google Scholar 

  20. Li JQ, Zeng XR, Tang JN, Xiao P (2003) Fabrication and thermal properties of a YSZ–NiCr joint with an interlayer of YSZ–NiCr functionally graded material. J Eur Ceram Soc 23:1847–1853

    Article  CAS  Google Scholar 

  21. Kloosterman AB, Kooi BJ, De Hosson JThM (1998) Electron microscopy of reaction layers between SiC and Ti–6Al–4V after laser embedding. Acta Mater 46:6205–6217

    Article  CAS  Google Scholar 

  22. Pei YT, Ocelik V, De Hosson JThM (2002) SiCp/Ti6Al4V functionally graded materials produced by laser melt injection. Acta Mater 50:2035–2051

    Article  CAS  Google Scholar 

  23. Popoola API, Phume L, Pityana S, Aigbodion VS (2016) In-situ formation of laser Ti6Al4V–TiB composite coatings on Ti6Al4V alloy for biomedical application. Surf Coat Technol 285:161–170

    Article  CAS  Google Scholar 

  24. Shen XB, Zhang ZH, Wei S, Wang FC, Lee SK (2011) Microstructures and mechanical properties of the in situ TiB–Ti metal–matrix composites synthesized by spark plasma sintering process. J Alloys Compd 509:7692–7696

    Article  CAS  Google Scholar 

  25. Shi JM, Zhang LX, Liu H, Sun Z, Feng JC (2018) Vacuum brazing of SiBCN ceramic and TC4 alloy using TiB2 reinforced AgTi composite filler. Vacuum 156:108–114

    Article  CAS  Google Scholar 

  26. Warrier SG, Lin RY (1995) Interactions between SiC fibers and a titanium alloy during infrared liquid infiltration. Metall Mater Trans A 26:1885–1894

    Article  Google Scholar 

  27. Liang YH, Wang HY, Yang YF, Wang YY, Jiang QC (2008) Evolution process of the synthesis of TiC in the Cu–Ti–C system. J Alloys Compd 452:298–303

    Article  CAS  Google Scholar 

  28. Ding WF, Xu JH, Fu YC, Xiao B, Su HH, Xu HJ (2006) Interfacial reaction between cubic boron nitride and ti during active brazing. J Mater Eng Perform 15:365–369

    Article  CAS  Google Scholar 

  29. Wang X, Cheng LF, Fan SW, Zhang LT (2012) Microstructure and mechanical properties of the GH783/2.5D C/SiC joints brazed with Cu–Ti + Mo composite filler. Mater Des 36:499–504

    Article  CAS  Google Scholar 

  30. Liu CF, Zhang J, Meng QC, Zhou Y, Naka M (2007) Joining of silicon nitride with a Cu76.5Pd8.5Ti15 filler alloy. Ceram Int 33:427–431

    Article  CAS  Google Scholar 

  31. Lin JH, Ba J, Cai YF, Ma Q, Luo DL, Wang ZY, Qi JL, Cao J, Feng JC (2017) Brazing SiO2f/SiO2 with TC4 alloy with the help of coating grapheme. Vacuum 145:241–244

    Article  CAS  Google Scholar 

  32. Park JW, Mendez PF, Eagar TW (2002) Strain energy distribution in ceramic-to-metal joints. Acta Mater 50:883–899

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support of National Natural Science Foundation of China (NSFC, Grant Nos. 51522404, 51775142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J.M., Zhang, L.X., Liu, H. et al. Reliable brazing of SiBCN ceramic and TC4 alloy using AgCuTi filler with the assist of laser melting deposited FGM layers. J Mater Sci 54, 2766–2778 (2019). https://doi.org/10.1007/s10853-018-3025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3025-6

Keywords

Navigation