Skip to main content
Log in

Removal of atrazine by photoelectrocatalytic process under sunlight using WN-codoped TiO2 photoanode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The present study was focused on the degradation of Atrazine (ATZ) and major by-products (DEA, DIA, DEDIA and ATZ-OH) from water by photoelectrocatalytic (PEC) oxidation process under solar light. The undoped TiO2, sub-stoichiometric TiO2 (TiO2−x) and codoped TiO2 (TiO2:WN) photoanodes were prepared by means of a radio frequency magnetron sputtering (RF-MS) deposition process. The X-ray photoelectron spectra (XPS) analysis shows that the N and W atoms were incorporated into the O and Ti lattice sites of TiO2 respectively (case of TiO2:WN film), while the XPS measurements of the TiO2−x films composition was determined to be TiO1.9. The UV–Vis transmittance spectra shows that in the case of the TiO2:WN films, the presence of nitrogen and tungsten improve the optical response of TiO2 under visible range compare to the presence of oxygen vacancies in to the TiO2−x films. The experimental results under solar light with an initial concentration of ATZ (100 µg L−1) show that after 180 min of treatment, the degradation of ATZ were 34.98%, 68.57% and 94.33% using TiO2, TiO2−x and TiO2:WN photoanodes, respectively. These results of ATZ degradation proved that TiO2:WN photoanode was more photoactive under solar light. The evolution by-products of ATZ under sunlight show that the principal mechanism of ATZ degradation was the oxidation of alkyl side chain and dealkylation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AOPs:

Advanced oxidation processes

ATZ:

Atrazine

ATZ-OH:

Atrazine-2-hydroxy

DEA:

Atrazine-desethyl

DEDIA:

Atrazine-desethyl-desisopropyl

DIA:

Atrazine-desisopropyl

DP:

Direct photolysis

PC:

Photocatalysis

PEC:

Photoelectrocatalysis

RF-MS:

Radio frequency magnetron sputtering

TiO2 :

Titanium dioxide

TiO2−x :

Titanium dioxide with oxygen vacancies

TiO2:WN:

Titanium dioxide codoped with tungsten and nitrogen

XPS:

X-ray photoelectron spectroscopy

References

  1. Byer JD, Struger J, Sverko E, Klawunn P, Todd A (2011) Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA. Chemosphere 82:1155–1160

    Article  CAS  Google Scholar 

  2. Daneshvar A, Aboulfadl K, Viglino L, Broséus R, Sauvé S, Madoux-Humery A-S, Weyhenmeyer GA, Prévost M (2012) Evaluating pharmaceuticals and caffeine as indicators of fecal contamination in drinking water sources of the Greater Montreal region. Chemosphere 88:131–139

    Article  CAS  Google Scholar 

  3. Woudneh MB, Ou Z, Sekela M, Tuominen T, Gledhill M (2009) Pesticide multiresidues in waters of the lower Fraser Valley, British Columbia, Canada. Part II. Groundw J Environ Qual 38:948–954

    Article  CAS  Google Scholar 

  4. Segura PA, MacLeod SL, Lemoine P, Sauvé S, Gagnon C (2011) Quantification of carbamazepine and atrazine and screening of suspect organic contaminants in surface and drinking waters. Chemosphere 84:1085–1094

    Article  CAS  Google Scholar 

  5. Komtchou S, Drogui P, Dirany A, Lafrance P (2016) Application des procédés d’oxydation avancée pour le traitement des eaux contaminées par les pesticides—revue de littérature. J Water Sci 29:231–262

    Google Scholar 

  6. Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci USA 107:4612–4617

    Article  CAS  Google Scholar 

  7. Trentacoste SV, Friedmann AS, Youker RT, Breckenridge CB, Zirkin BR (2001) Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J Androl 22:142–148

    CAS  PubMed  Google Scholar 

  8. Komtchou S, Dirany A, Drogui P, Robert D, Lafrance P (2017) Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes. Water Res 125:91–103

    Article  CAS  Google Scholar 

  9. Borràs N, Oliver R, Arias C, Brillas E (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114:6613–6621

    Article  Google Scholar 

  10. Luo C, Ma J, Jiang J, Liu Y, Song Y, Yang Y, Guan Y, Wu D (2015) Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5 and UV/S2O8 2−. Water Res 80:99–108

    Article  CAS  Google Scholar 

  11. Jing L, Chen B, Wen D, Zheng J, Zhang B (2017) Pilot-scale treatment of atrazine production wastewater by UV/O3/ultrasound: factor effects and system optimization. J Environ Manag 203:182–190

    Article  CAS  Google Scholar 

  12. Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2017) Treatment of actual effluents produced in the manufacturing of atrazine by a photo-electrolytic process. Chemosphere 172:185–192

    Article  CAS  Google Scholar 

  13. McMurray TA, Dunlop PSM, Byrne JA (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A 182:43–51

    Article  CAS  Google Scholar 

  14. Parra S, Elena Stanca S, Guasaquillo I, Ravindranathan K, Thampi (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116

    Article  CAS  Google Scholar 

  15. Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2015) Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N,F. Chem Eng J 280:330–343

    Article  CAS  Google Scholar 

  16. Yu L, Wang Z, Shi L, Yuan S, Zhao Y, Fang J, Deng W (2012) Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl Catal B 113–114:318–325

    Article  Google Scholar 

  17. Komtchou S, Dirany A, Drogui P, Delegan N, El Khakani MA, Robert D, Lafrance P (2016) Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2−x photoanode. Chemosphere 157:79–88

    Article  CAS  Google Scholar 

  18. Daghrir R, Drogui P, El Khakani MA (2013) Photoelectrocatalytic oxidation of chlortetracycline using Ti/TiO2 photo-anode with simultaneous H2O2 production. Electrochim Acta 87:18–31

    Article  CAS  Google Scholar 

  19. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  20. Peng F, Cai L, Huang L, Yu H, Wang H (2008) Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method. J Phys Chem Solids 69:1657–1664

    Article  CAS  Google Scholar 

  21. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051

    Article  CAS  Google Scholar 

  22. Gong J, Yang C, Pu W, Zhang J (2011) Liquid phase deposition of tungsten doped TiO2 films for visible light photoelectrocatalytic degradation of dodecyl-benzenesulfonate. Chem Eng J 167:190–197

    Article  CAS  Google Scholar 

  23. Sathasivam S, Bhachu DS, Lu Y, Chadwick N, Althabaiti SA, Alyoubi AO, Basahel SN, Carmalt CJ, Parkin IP (2015) Tungsten doped TiO2 with enhanced photocatalytic and optoelectrical properties via aerosol assisted chemical vapor deposition. Nat Res 5:10952

    CAS  Google Scholar 

  24. Park B-I, Jie H, Song B-G, Kang K-M, Park J-K, Cho S-H (2014) The structural, morphological, and surface properties of tungsten-doped TiO2 nanopowders and their contribution to the photocatalytic activity. Res Chem Intermed 40:115–126

    Article  CAS  Google Scholar 

  25. Li J, Xu J, Dai W-L, Li H, Fan K (2008) One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol. Appl Catal B 82:233–243

    Article  CAS  Google Scholar 

  26. Pandiyan R, Delegan N, Dirany A, Drogui P, El Khakani MA (2016) Probing the electronic surface properties and bandgap narrowing of in situ N, W, and (W,N) doped magnetron-sputtered TiO2 films intended for electro-photocatalytic applications. J Phys Chem C 120:631–638

    Article  CAS  Google Scholar 

  27. Delegan N, Daghrir R, Drogui P, El Khakani MA (2014) Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light. J Appl Phys 116:153510

    Article  Google Scholar 

  28. Zhao L, Jiang Q, Lian J (2008) Visible-light photocatalytic activity of nitrogen-doped TiO2 thin film prepared by pulsed laser deposition. Appl Surf Sci 254:4620–4625

    Article  CAS  Google Scholar 

  29. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  30. Jackman MJ, Thomas AG, Muryn C (2015) Photoelectron spectroscopy study of stoichiometric and reduced anatase TiO2(101) surfaces: the effect of subsurface defects on water adsorption at near-ambient pressures. J Phys Chem C 119:13682–13690

    Article  CAS  Google Scholar 

  31. Emeline AV, Kuznetsov VN, Rybchuk VK, Serpone N (2008) Visible-light-active titania photocatalysts: the case of N-doped s—properties and some fundamental issues. Int J Photoenergy 2008:19

    Article  Google Scholar 

  32. Lynch J, Giannini C, Cooper JK, Loiudice A, Sharp ID, Buonsanti R (2015) Substitutional or interstitial site-selective nitrogen doping in TiO2 nanostructures. J Phys Chem C 119:7443–7452

    Article  CAS  Google Scholar 

  33. Di Valentin C, Pacchioni G, Selloni A (2004) Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys Rev B 70:085116

    Article  Google Scholar 

  34. Mishra T, Mahato M, Aman N, Patel JN, Sahu RK (2011) A mesoporous WN co-doped titania nanomaterial with enhanced photocatalytic aqueous nitrate removal activity under visible light. Catal Sci Technol 1:609–615

    Article  CAS  Google Scholar 

  35. Sun M, Xu N, Cao YW, Yao JN, Wang EG (2000) Nanocrystalline tungsten oxide thin film: preparation, microstructure, and photochromic behavior. J Mater Res 15:927–933

    Article  CAS  Google Scholar 

  36. Sajjad AKL, Shamaila S, Zhang J (2012) Study of new states in visible light active W, N co-doped TiO2 photo catalyst. Mater Res Bull 47:3083–3089

    Article  CAS  Google Scholar 

  37. Delegan N, Pandiyan R, Komtchou S, Dirany A, Drogui P, El Khakani MA (2018) In-situ co-doping of sputter-deposited TiO2:WN films for the development of photoanodes intended for visible-light electro-photocatalytic degradation of emerging pollutants. J Appl Phys 123:205101

    Article  Google Scholar 

  38. Delegan N, Pandiyan R, Johnston S, Dirany A, Komtchou S, Drogui P, El Khakani MA (2018) Lifetime enhancement of visible light induced photocharges in tungsten and nitrogen in situ codoped TiO2:WN thin films. J Phys Chem C 112:5411–5419

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et technologies (FRQNT) through their strategic network Plasma-Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Drogui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komtchou, S., Delegan, N., Dirany, A. et al. Removal of atrazine by photoelectrocatalytic process under sunlight using WN-codoped TiO2 photoanode. J Appl Electrochem 48, 1353–1361 (2018). https://doi.org/10.1007/s10800-018-1253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1253-8

Keywords

Navigation