Skip to main content
Log in

Selective Oxidation of Glycerol to Glyceraldehyde with H2O2 Catalyzed by CuNiAl Hydrotalcites Supported BiOCl in Neutral Media

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CuNiAl hydrotalcites supported BiOCl were prepared by one-step synthesis for the selective oxidation of glycerol to glyceraldehyde with H2O2 as oxidant. The prepared catalysts were found to be efficient due to the synergetic catalysis of surface oxygen vacancies, active Cu2+ ions in the HT-lattice and abundant surface –OH groups of catalysts. The optimal glycerol conversion could reach 75.4% with 82.4% of the selectivity to glyceraldehyde. Moreover, the catalyst could be reused at least 6 times, and a possible reaction mechanism was also proposed.

Graphical Abstract

Inexpensive and environmentally friendly BiOCl/CuNiAl-HTs were synthesized by one-step for the highly selective oxidation of glycerol to glyceraldehyde. The glycerol conversion could reach 75.4% with 82.4% selectivity to GLAD. Such a highly efficient catalytic performance could be attributed to the synergistic effect of oxygen vacancies and the coordination of glycerol on Bi3+ in the supported BiOCl catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  Google Scholar 

  2. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  3. Sun D, Yamada Y, Sato S, Uedab W (2017) Glycerol as a potential renewable raw material for acrylic acid production. Green Chem 19:3186–3213

    Article  CAS  Google Scholar 

  4. Davis SE, Ide MS, Davis RJ (2013) Selective oxidation of alcohols and aldehydes over supported metal nanoparticles. Green Chem 15:17–45

    Article  CAS  Google Scholar 

  5. Cespi D, Passarini F, Mastragostino G, Vassura I, Larocca S, Iaconi A, Chieregato A, Duboise JL, Cavani F (2015) Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis for acrolein production. Green Chem 17:343–355

    Article  CAS  Google Scholar 

  6. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  7. Ren Y, Chen Z, Cai Y, Lin J (2011) Electrosynthesis of glyceraldehyde by cyclic nano-MnO2/Mn2+ in bipolar membrane-equipped electrolytic cell. Electrochem Commun 13:1317–1319

    Article  CAS  Google Scholar 

  8. Pembere AM, Luo Z (2017) Jones oxidation of glycerol catalysed by small gold clusters. Phys Chem Chem Phys 19:6620–6625

    Article  CAS  Google Scholar 

  9. Bianchi CL, Canton P, Dimitratos N, Porta F, Prati L (2005) Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal Today 102:203–212

    Article  Google Scholar 

  10. Fordham P, Besson M, Gallezot P (1995) Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl Catal 133:L179–L184

    Article  CAS  Google Scholar 

  11. Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. ChemCatChem 3:1176–1185

    Article  CAS  Google Scholar 

  12. Zalineeva A, Serov A, Padilla M, Martinez U, Artyushkova K, Baranton S, Coutanceau C, Atanassov PB (2014) Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J Am Chem Soc 136:3937–3945

    Article  CAS  Google Scholar 

  13. Garcia AC, Birdja YY, Tremiliosi-Filho G, Koper MTM (2017) Glycerol electro-oxidation on bismuth-modified platinum single crystals. J Catal 346:117–124

    Article  CAS  Google Scholar 

  14. Chornaja S, Sproge E, Dubencovs K, Kulikova L, Serga V, Cvetkovs A, Kampars V (2014) Kampars. Selective oxidation of glycerol to glyceraldehydes over novel monometallic platinum catalysts. Key Eng Mat 604:139–141

    Article  Google Scholar 

  15. Dai X, Cui X, Yuan H, Deng Y, Shi F (2015) Cooperative transformation of nitroarenes and biomass-based alcohols catalyzed by CuNiAlOx. RSC Adv 5:7970–7975

    Article  CAS  Google Scholar 

  16. Scholz D, Aellig C, Mondelli C, Ramrez J (2015) Continuous transfer hydrogenation of sugars to alditols with bioderived donors over Cu–Ni–Al catalysts. ChemCatChem 7:1551–1558

    Article  CAS  Google Scholar 

  17. Zhao L, Li X, Zhao J (2013) Correlation of structural and chemical characteristics with catalytic performance of hydrotalcite-based CuNiAl mixed oxides for SO2 abatement. Chem Eng J 223:164–171

    Article  CAS  Google Scholar 

  18. Wu GD, Wang XL, Huang YA, Liu XF, Zhang F, Ding KQ, Yang XL (2013) Selective oxidation of glycerol with O2 catalyzed by low-cost CuNiAl hydrotalcites. J Mol Catal A 379:185–191

    Article  CAS  Google Scholar 

  19. Wang XL, Wu GD, Liu XF, Zhang CF, Lin QB (2016) Selective oxidation of glycerol with O2 catalyzed by LDH hosted transition metal complexes. Catal Lett 146:620–628

    Article  CAS  Google Scholar 

  20. Zhou S, Qian ZhY, Sun T, Xu JG, Xia ChH (2011) Catalytic wet peroxide oxidation of phenol over Cu–Ni–Al hydrotalcite. Appl Clay Sci 53:627–633

    Article  CAS  Google Scholar 

  21. Dubey A, Rives V, Kannan S (2002) Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu, Ni and Al. J Mol Catal A 181:151–161

    Article  CAS  Google Scholar 

  22. Li H, Qin F, Yang Z, Cui X, Wang J, Zhang L (2017) New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J Am Chem Soc 139:3513–3521

    Article  CAS  Google Scholar 

  23. Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper MTM (2012) Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth. ACS Catal 2:759–764

    Article  CAS  Google Scholar 

  24. Ning X, Li Y, Yu H, Peng F, Wang H, Yang Y (2016) Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J Catal 335:95–104

    Article  CAS  Google Scholar 

  25. Li ZJ, Qu Y, Hu K, Humayun M, Chen SY, Jing LQ (2017) Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Appl catal B 203:355–362

    Article  CAS  Google Scholar 

  26. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  27. Labajos FM, Rives V, Ulibarri MA (1992) Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials. J Mater Sci 27:1546–1552

    Article  CAS  Google Scholar 

  28. Huang D, Ma J, Yu L, Wu D, Wang K, Yang M, Papoulis D, Komarneni S (2015) AgCl and BiOCl composited with NiFe-LDH for enhanced photo-degradation of Rhodamine B. Sep Purif Technol 156:789–794

    Article  CAS  Google Scholar 

  29. Guo N, Liang Y, Lan S, Liu L, Ji G, Gan S, Zou H, Xu X (2014) Uniform TiO2–SiO2 hollow nanospheres: synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol. Appl Surf Sci 305:562–574

    Article  CAS  Google Scholar 

  30. Zhao K, Zhang LZ, Wang JJ, Li QX, He WW, Yin JJ (2013) Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc 135:15750–15753

    Article  CAS  Google Scholar 

  31. Sá J, Aguera CA, Gross S (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal B 85:192–200

    Article  Google Scholar 

  32. Wang H, Xiang X, Li F, Evans DG, Duan X (2009) Investigation of the structure and surface characteristics of Cu–Ni–M(III) mixed oxides (M = Al, Cr and In) prepared from layered double hydroxide precursors. Appl Surf Sci 255:6945–6952

    Article  CAS  Google Scholar 

  33. Liang SJ, Wen LR, Lin S, Bi JH, Feng PY, Fu XZ, Wu L (2014) Monolayer HNb3O8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angew Chem Int Ed 53:2951–2955

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from National Natural Science Foundation of China 21203093, Natural Science Foundation of Jiangsu Province BK20141388 and BK20161481, Research Joint Research Project of Jiangsu Province BY2016008-03, Key Research and Development Program of Jiangsu Province BE2018718, and College Students Practice Innovation Training Program of Nanjing Institute of Technology TP20161201 and TZ20170023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongde Wu or Dengfeng Wang.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, G., Zhang, X. et al. Selective Oxidation of Glycerol to Glyceraldehyde with H2O2 Catalyzed by CuNiAl Hydrotalcites Supported BiOCl in Neutral Media. Catal Lett 149, 1046–1056 (2019). https://doi.org/10.1007/s10562-019-02689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02689-8

Keywords

Navigation