Skip to main content
Log in

Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly(acrylic acid) superabsorbent hydrogel

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyacrylic acid grafted sodium alginate (SA-cl-PAA)-based hydrogel was synthesized by an aqueous polymerisation method. An acrylic acid (AA) monomer was grafted onto sodium alginate (SA) using N,N′-methylene-bisacrylamide (MBA) and potassium persulfate (KPS) as a crosslinker–initiator system. The impact of various parameters such as reaction time, the amount of solvent, pH, crosslinker amount, initiator concentration and monomer concentration on the swelling behavior of the synthesized hydrogel was investigated. We obtained a hydrogel with swelling percentage 41,298% which is quite high. Swelling studies were carried out under acidic (pH 2 buffer) and basic (pH 10 buffer) conditions and evaluated kinetically. The results revealed that the swelling process follows second order kinetics, and the water transport inside the hydrogel supports a Fickian mechanism. The swelling results also indicate that the swelling properties of the synthesized hydrogel showed an on- and off-switchable behavior under basic and acidic conditions, respectively. The synthesized hydrogel was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The hydrogel was used in the victoria blue R (VB) and rhodamine 6G (RG6) dye adsorption from wastewater. It was found that hydrogel adsorbed 95.8 and 99% of VB and RG6 (132 ppm), respectively, within 77 min. Adsorption of victoria blue is due to electrostatic interaction only, and removal of rhodamine 6G is explained on the basis of electrostatic interaction and hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Dobritoiu R, Patachia S (2013) A study of dyes sorption on biobased cryogels. Appl Surf Sci 285:56–64

    Article  CAS  Google Scholar 

  2. Sharma K, Kaith BS, Kumar V et al (2013) Synthesis and properties of poly(acrylamide–aniline)-grafted gum ghatti based nanospikes. RSC Adv 3:25830–25839

    Article  CAS  Google Scholar 

  3. Sharma K, Kumar V, Kaith BS et al (2015) Synthesis of biodegradable gum ghatti based poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54:1982–1991

    Article  CAS  Google Scholar 

  4. Shekhar S, Mukherjee M, Sen AK (2016) Swelling, thermal and mechanical properties of NIPAM-based terpolymeric hydrogel. Polym Bull 73:125–145

    Article  CAS  Google Scholar 

  5. Mohammad N, Atassi Y, Tally M (2017) Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-gpoly(AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym Bull 74:4453–4481

    Article  CAS  Google Scholar 

  6. Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly(acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym 69:774–783

    Article  CAS  Google Scholar 

  7. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880

    Article  CAS  PubMed  Google Scholar 

  8. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391:1509–1519

    Article  CAS  PubMed  Google Scholar 

  9. Pourjavadi A, Jahromi PE, Seidi F, Salimi H (2010) Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels. Carbohydr Polym 79:933–940

    Article  CAS  Google Scholar 

  10. Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68:367–374

    Article  CAS  Google Scholar 

  11. Shang J, Shao Z, Chen X (2008) Chitosan-based electroactive hydrogel. Polymer 49:5520–5525

    Article  CAS  Google Scholar 

  12. Peng G, Xu S, Peng Y et al (2008) A new amphoteric superabsorbent hydrogel based on sodium starch sulfate. Bioresour Technol 99:444–447

    Article  CAS  PubMed  Google Scholar 

  13. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  14. Zhang J, Wang L, Wang A (2007) Preparation and properties of chitosan-g-poly (acrylic acid)/montmorillonite superabsorbent nanocomposite via in situ intercalative polymerization. Ind Eng Chem Res 46:2497–2502

    Article  CAS  Google Scholar 

  15. Pourjavadi A, Barzegar S, Mahdavinia GR (2006) MBA-crosslinked Na–Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydr Polym 66:386–395

    Article  CAS  Google Scholar 

  16. Bosio VE, Basu S, Abdullha F et al (2014) Encapsulation of Congo Red in carboxymethyl guar gum–alginate gel microspheres. React Funct Polym 82:103–110

    Article  CAS  Google Scholar 

  17. Mishra S, Bajpai J, Bajpai AK (2004) Evaluation of the water sorption and controlled-release potential of binary polymeric beads of starch and alginate loaded with potassium nitrate as an agrochemical. J Appl Polym Sci 94:1815–1826

    Article  CAS  Google Scholar 

  18. Babu VR, Sairam M, Hosamani KM, Aminabhavi TM (2007) Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym 69:241–250

    Article  CAS  Google Scholar 

  19. Gan L, Shang S, Hu E et al (2015) Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl Surf Sci 357:866–872

    Article  CAS  Google Scholar 

  20. Yan B, Chen Z, Cai L et al (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47

    Article  CAS  Google Scholar 

  21. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82

    Article  CAS  Google Scholar 

  22. Zhou Y, Fu S, Zhang L, Zhan H (2013) Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-gp (AA-co-AM). Carbohydr Polym 97:429–435

    Article  CAS  PubMed  Google Scholar 

  23. Ma Z, Li Q, Yue Q et al (2011) Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresour Technol 102:2853–2858

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Liu Y, Tan H, Jiang J (2009) Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr Polym 75:287–292

    Article  CAS  Google Scholar 

  25. Beaulieu L, Savoie L, Paquin P, Subirade M (2002) Elaboration and characterization of whey protein beads by an emulsification/cold gelation process: application for the protection of retinol. Biomacromol 3:239–248

    Article  CAS  Google Scholar 

  26. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  27. Feng D, Bai B, Ding C et al (2014) Synthesis and swelling behaviors of yeast-g-poly(acrylic acid) superabsorbent co-polymer. Ind Eng Chem Res 53:12760–12769

    Article  CAS  Google Scholar 

  28. Thakur S, Pandey S, Arotiba O (2017) Sol–gel derived xanthan gum/silica nanocomposite—a highly efficient cationic dyes adsorbent in aqueous system. Int J Biol Macromol 103:596–604

    Article  CAS  PubMed  Google Scholar 

  29. Yadav M, Singh SK, Rhee KY (2013) Synthesis of partially hydrolyzed graft copolymer (H-Ipomoea hederacea seed gum-g-polyacrylonitrile). Carbohydr Polym 95:471–478

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Li G, He Y-G et al (2009) Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 78:95–99

    Article  CAS  Google Scholar 

  31. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Eclética Quím 29:57–64

    Article  CAS  Google Scholar 

  32. Fabia J, Slusarczyk CZ, Gawlowski A et al (2005) Supermolecular structure of alginate fibres for medical applications studied by means of WAXS and SAXS methods. Fibres Text East Eur 13:114–117

    CAS  Google Scholar 

  33. Fang D, Liu Y, Jiang S et al (2011) Effect of intermolecular interaction on electrospinning of sodium alginate. Carbohydr Polym 85:276–279

    Article  CAS  Google Scholar 

  34. Juang L-C, Wang C-C, Lee C-K (2006) Adsorption of basic dyes onto MCM-41. Chemosphere 64:1920–1928

    Article  CAS  PubMed  Google Scholar 

  35. Li Q, Ma Z, Yue Q et al (2012) Synthesis, characterization and swelling behavior of superabsorbent wheat straw graft copolymers. Bioresour Technol 118:204–209

    Article  CAS  PubMed  Google Scholar 

  36. Shukla NB, Madras G (2011) Reversible swelling/deswelling characteristics of ethylene glycol dimethacrylate cross-linked poly (acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbents. Ind Eng Chem Res 50:10918–10927

    Article  CAS  Google Scholar 

  37. Ostroha J, Pong M, Lowman A, Dan N (2004) Controlling the collapse/swelling transition in charged hydrogels. Biomaterials 25:4345–4353

    Article  CAS  PubMed  Google Scholar 

  38. Liu D, Li Z, Li W et al (2013) Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind Eng Chem Res 52:11036–11044

    Article  CAS  Google Scholar 

  39. Zhang M, Cheng Z, Zhao T et al (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874

    Article  CAS  PubMed  Google Scholar 

  40. Patra T, Pal A, Dey J (2010) A smart supramolecular hydrogel of N α-(4-n-alkyloxybenzoyl)-l-histidine exhibiting pH-modulated properties. Langmuir 26:7761–7767

    Article  CAS  PubMed  Google Scholar 

  41. Al-Ghouti MA, Li J, Salamh Y et al (2010) Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J Hazard Mater 176:510–520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge with gratitude the following for their financial support: The Centre for Nanomaterials Science Research, University of Johannesburg, South Africa; the Faculty of Science, University of Johannesburg, South Africa and the National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omotayo A. Arotiba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Arotiba, O.A. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly(acrylic acid) superabsorbent hydrogel. Polym. Bull. 75, 4587–4606 (2018). https://doi.org/10.1007/s00289-018-2287-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2287-0

Keywords

Navigation