Skip to main content
Log in

Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berridge, M. J. (2012). Cell signalling biology: signalling defects and disease. Biochemical Journal. https://doi.org/10.1042/csb0001012.

    Article  Google Scholar 

  2. Christie, J. M., Arvai, A. S., Baxter, K. J., Heilmann, M., Pratt, A. J., O’Hara, A., Kelly, S. M., Hothorn, M., Smith, B. O., & Hitomi, K. (2012). Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 335(6075), 1492–1496. https://doi.org/10.1126/science.1218091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hughes, J. (2013). Phytochrome cytoplasmic signaling. Annual Review of Plant Biology, 64(1), 377–402. https://doi.org/10.1146/annurev-arplant-050312-120045.

    Article  CAS  PubMed  Google Scholar 

  4. Gomelsky, M., & Klug, G. (2002). BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends in Biochemical Sciences, 27, 497–500.

    Article  CAS  PubMed  Google Scholar 

  5. Christie, J. M. (2007). Phototropin blue-light receptors. Annual Review of Plant Biology, 58(1), 21–45. https://doi.org/10.1146/annurev.arplant.58.032806.103951.

    Article  CAS  PubMed  Google Scholar 

  6. van der Horst, M. A., & Hellingwerf, K. J. (2004). Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Accounts of Chemical Research, 37(1), 13–20. https://doi.org/10.1021/ar020219d.

    Article  CAS  PubMed  Google Scholar 

  7. Schröder-Lang, S., Schwärzel, M., Seifert, R., Strünker, T., Kateriya, S., Looser, J., Watanabe, M., Kaupp, U. B., Hegemann, P., & Nagel, G. (2007). Fast manipulation of cellular cAMP level by light in vivo. Nature Methods, 4(1), 39–42. https://doi.org/10.1038/nmeth975.

    Article  CAS  PubMed  Google Scholar 

  8. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., & Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature, 458(7241), 1025–1029. https://doi.org/10.1038/nature07926.

    Article  CAS  PubMed  Google Scholar 

  9. Levskaya, A., Weiner, O. D., Lim, W. A., & Voigt, C. A. (2009). Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 461(7266), 997–1001. https://doi.org/10.1038/nature08446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., & Hahn, K. M. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature, 461(7260), 104–108. https://doi.org/10.1038/nature08241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kennedy, M. J., Hughes, R. M., Peteya, L. A., Schwartz, J. W., Ehlers, M. D., & Tucker, C. L. (2010). Rapid blue-light-mediated induction of protein interactions in living cells. Nature Methods, 7(12), 973–975. https://doi.org/10.1038/nmeth.1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gautier, A., Deiters, A., & Chin, J. W. (2011). Light-activated kinases enable temporal dissection of signaling networks in living cells. Journal of the American Chemical Society, 133(7), 2124–2127. https://doi.org/10.1021/ja1109979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Strickland, D., Lin, Y., Wagner, E., Hope, C. M., Zayner, J., Antoniou, C., Sosnick, T. R., Weiss, E. L., & Glotzer, M. (2012). TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nature Methods, 9(4), 379–384. https://doi.org/10.1038/nmeth.1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wend, S., Wagner, H. J., Müller, K., Zurbriggen, M. D., Weber, W., & Radziwill, G. (2014). Optogenetic control of protein kinase activity in mammalian cells. ACS Synthetic Biology, 3(5), 280–285. https://doi.org/10.1021/sb400090s.

    Article  CAS  PubMed  Google Scholar 

  15. Beavo, J. A., & Brunton, L. L. (2002). Cyclic nucleotide research—still expanding after half a century. Nature Reviews. Molecular Cell Biology, 3(9), 710–718. https://doi.org/10.1038/nrm911.

    Article  CAS  PubMed  Google Scholar 

  16. Rehmann, H., Wittinghofer, A., & Bos, J. L. (2007). Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nature Reviews. Molecular Cell Biology, 8(1), 63–73. https://doi.org/10.1038/nrm2082.

    Article  CAS  PubMed  Google Scholar 

  17. Lucas, K. A., Pitari, G. M., Kazerounian, S., Ruiz-Stewart, I., Park, J., Schulz, S., Chepenik, K. P., & Waldman, S. A. (2000). Guanylyl cyclases and signaling by cyclic GMP. Pharmacological Reviews, 52(3), 375–414.

    CAS  PubMed  Google Scholar 

  18. Iseki, M., Matsunaga, S., Murakami, A., Ohno, K., Shiga, K., Yoshida, K., Sugai, M., Takahashi, T., Hori, T., & Watanabe, M. (2002). A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature, 415(6875), 1047–1051. https://doi.org/10.1038/4151047a.

    Article  CAS  PubMed  Google Scholar 

  19. Penzkofer, A., Stierl, M., Hegemann, P., & Kateriya, S. (2011). Photo-dynamics of the BLUF domain containing soluble adenylate cyclase (nPAC) from the amoeboflagellate Naegleria gruberi NEG-M strain. Chemical Physics, 387(1-3), 25–38. https://doi.org/10.1016/j.chemphys.2011.05.028.

    Article  CAS  Google Scholar 

  20. Penzkofer, A., Tanwar, M., Veetil, S. K., Kateriya, S., Stierl, M., & Hegemann, P. (2013). Photo-dynamics and thermal behavior of the BLUF domain containing adenylate cyclase NgPAC2 from the amoeboflagellate Naegleria gruberi NEG-M strain. Chemical Physics, 412, 96–108. https://doi.org/10.1016/j.chemphys.2012.12.015.

    Article  CAS  Google Scholar 

  21. Penzkofer, A., Tanwar, M., Veetil, S. K., Kateriya, S., Stierl, M., & Hegemann, P. (2014). Photo-dynamics of BLUF domain containing adenylyl cyclase NgPAC3 from the amoeboflagellate Naegleria gruberi NEG-M strain. Journal of Photochemistry and Photobiology A: Chemistry, 287, 19–29. https://doi.org/10.1016/j.jphotochem.2014.04.017.

    Article  CAS  Google Scholar 

  22. Stierl, M., Stumpf, P., Udwari, D., Gueta, R., Hagedorn, R., Losi, A., Gartner, W., Petereit, L., Efetova, M., Schwarzel, M., Oertner, T. G., Nagel, G., & Hegemann, P. (2011). Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. The Journal of Biological Chemistry, 286(2), 1181–1188. https://doi.org/10.1074/jbc.M110.185496.

    Article  CAS  PubMed  Google Scholar 

  23. Weissenberger, S., Schultheis, C., Liewald, J. F., Erbguth, K., Nagel, G., & Gottschalk, A. (2011). PAC—an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. Journal of Neurochemistry, 116(4), 616–625. https://doi.org/10.1111/j.1471-4159.2010.07148.x.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Z., Tanaka, K. F., Matsunaga, S., Iseki, M., Watanabe, M., Matsuki, N., Ikegaya, Y., & Koyama, R. (2016). Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis. Scientific Reports, 5, 19679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traut, T. W. (1994). Physiological concentrations of purines and pyrimidines. Molecular and Cellular Biochemistry, 140(1), 1–22. https://doi.org/10.1007/BF00928361.

    Article  CAS  PubMed  Google Scholar 

  26. Ryu, M. H., Moskvin, O. V., Siltberg-Liberles, J., & Gomelsky, M. (2010). Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. The Journal of Biological Chemistry, 285(53), 41501–41508. https://doi.org/10.1074/jbc.M110.177600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheib, U., Stehfest, K., Gee, C. E., Korschen, H. G., Fudim, R., Oertner, T. G., & Hegemann, P. (2015). The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Science Signaling, 8, 1–8.

    Article  CAS  Google Scholar 

  28. Gao, S., Nagpal, J., Schneider, M. W., Kozjak-Pavlovic, V., Nagel, G., & Gottschalk, A. (2015). Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nature Communications, 6(1), 8046. https://doi.org/10.1038/ncomms9046.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185. https://doi.org/10.1016/0092-8674(95)90401-8.

    Article  CAS  PubMed  Google Scholar 

  30. Penzkofer, A., Tanwar, M., Veetil, S. K., & Kateriya, S. (2014). Photo-dynamics of photoactivated adenylyl cyclase LiPAC from the spirochete bacterium Leptonema illini strain 3055. Trends in Applied Spectroscopy, 11, 39–62.

    CAS  Google Scholar 

  31. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404.

    Article  CAS  Google Scholar 

  32. Geer, L. Y., Domrachev, M., Lipman, D. J., & Bryant, S. H. (2002). CDART: protein homology by domain architecture. Genome Research, 12(10), 1619–1623. https://doi.org/10.1101/gr.278202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, S., Dragnea, V., Masuda, S., Ybe, J., Moffat, K., & Bauer, C. (2005). Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry, 44(22), 7998–8005. https://doi.org/10.1021/bi0502691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan, H., Anderson, S., Masuda, S., Dragnea, V., Moffat, K., & Bauer, C. (2006). Crystal structures of the Synechocystis photoreceptor Slr1694 reveal distinct structural states related to signaling. Biochemistry, 45(42), 12687–12694. https://doi.org/10.1021/bi061435n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Linder, J. U., & Schultz, J. E. (2003). The class III adenylyl cyclases: multi-purpose signalling modules. Cellular Signalling, 15(12), 1081–1089. https://doi.org/10.1016/S0898-6568(03)00130-X.

    Article  CAS  PubMed  Google Scholar 

  36. Kamenetsky, M., Middelhaufe, S., Bank, E. M., Levin, L. R., Buck, J., & Steegborn, C. (2006). Molecular details of cAMP generation in mammalian cells: a tale of two systems. Journal of Molecular Biology, 362(4), 623–639. https://doi.org/10.1016/j.jmb.2006.07.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Y., Ruoho, A. E., Rao, V. D., & Hurley, J. H. (1997). Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13414–13419. https://doi.org/10.1073/pnas.94.25.13414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tucker, C. L., Hurley, J. H., Miller, T. R., & Hurley, J. B. (1998). Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 5993–5997. https://doi.org/10.1073/pnas.95.11.5993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sunahara, R. K., Beuve, A., Tesmer, J. J. G., Sprang, S. R., Garbers, D. L., & Gilman, A. G. (1998). Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. Journal of Biological Chemistry, 273(26), 16332–16338. https://doi.org/10.1074/jbc.273.26.16332.

    Article  CAS  PubMed  Google Scholar 

  40. Masuda, S., Hasegawa, K., Ishii, A., & Ono, T. A. (2004). Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry, 43(18), 5304–5313. https://doi.org/10.1021/bi049836v.

    Article  CAS  PubMed  Google Scholar 

  41. Zirak, P., Penzkofer, A., Mathes, T., & Hegemann, P. (2009). Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor. Journal of Photochemistry and Photobiology. B, Biology, 97(2), 61–70. https://doi.org/10.1016/j.jphotobiol.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  42. Smolenski a. (2012). Novel roles of cAMP/cGMP-dependent signaling in platelets. Journal of Thrombosis and Haemostasis, 10(2), 167–176. https://doi.org/10.1111/j.1538-7836.2011.04576.x.

    Article  CAS  PubMed  Google Scholar 

  43. Francis, S. H., & Corbin, J. D. (1999). Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Critical Reviews in Clinical Laboratory Sciences, 36(4), 275–328. https://doi.org/10.1080/10408369991239213.

    Article  CAS  PubMed  Google Scholar 

  44. Mujoo, K., Sharin, V. G., Martin, E., Choi, B. K., Sloan, C., Nikonoff, L. E., Kots, A. Y., & Murad, F. (2010). Role of soluble guanylyl cyclase-cyclic GMP signaling in tumor cell proliferation. Nitric Oxide: Biology and Chemistry/Official Journal of the Nitric Oxide Society, 22(1), 43–50. https://doi.org/10.1016/j.niox.2009.11.007.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CIF staff, University of Delhi South Campus (UDSC), for sequencing and CD spectroscopy studies. Dr. Ravi Tandon, SBT, JNU is acknowledged for sharing lab resources.

Funding

We thank the SERB for research grant (SB/EMEQ-188/2013) and the Govt. of India and R&D, University of Delhi, for funding the project.

Author information

Authors and Affiliations

Authors

Contributions

SK conceived the research plan, interpreted the data, and wrote the manuscript. MT designed and performed all the experiments, analyzed the data, and wrote the manuscript. KS and PM performed reviewer’s suggested experiments.

Corresponding author

Correspondence to Suneel Kateriya.

Ethics declarations

Competing Interests

All the authors declare that they have no competing interest.

Additional information

Highlights

• Engineered photoactivated guanylyl cyclases (PGCs) possess different photocycles with BLUF photoreceptor properties.

• Engineered photoactivated guanylyl cyclases (PGCs) show an increase in cGMP level upon irradiation with blue light.

• Engineered photoactivated guanylyl cyclases (PGCs) with varying amplitudes of guanylyl cyclase activity might be due to residues within the catalytic active site other than the three substrate-binding residues.

Electronic supplementary material

ESM 1

(DOC 2286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, M., Sharma, K., Moar, P. et al. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools. Appl Biochem Biotechnol 185, 1014–1028 (2018). https://doi.org/10.1007/s12010-018-2710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2710-x

Keywords

Navigation