Skip to main content
Log in

Agglomeration characteristics of nano-size TiO2 particles using analytical solution

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We developed equations for nano-sized titanium dioxide (TiO2) particles self preserving time (SPT) lag that combines with agglomerate key parameters such as primary particle size (PPS), geometric standard deviation (GSD) and mass fractal dimension (MFD). A statistical formula has been developed that relies on SPT lag as the key parameter of agglomerates. Finally, this research presents the first analytical solution by integrating these key parameters into one formula, which can be utilized as a handy tool to calculate the time for reaching the asymptotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. E. Pratsinis, Prog. Energy Combust. Sci., 24, 197 (1998).

    Article  CAS  Google Scholar 

  2. W. J. Stark and S. E. Pratsinis, Powder Technol., 126, 103 (2002).

    Article  CAS  Google Scholar 

  3. S. K. Friedlander and D.Y. H. Pui, J. Nanoparticle Res., 6, 313 (2004).

    Article  CAS  Google Scholar 

  4. S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff, J. Phys. Chem. C, 114, 8814 (2010).

    Article  CAS  Google Scholar 

  5. A. Schmidt-Ott, Appl. Phys. Lett., 52, 954 (1988).

    Article  CAS  Google Scholar 

  6. T. Matsoukas and S.K. Friedlander, J. Colloid Interface Sci., 146, 495 (1991).

    Article  CAS  Google Scholar 

  7. M.K. Akhtar, Y. Xiong and S.E. Pratsinis, AIChE J., 37, 1561 (1991).

    Article  CAS  Google Scholar 

  8. Y.-W. Oh, K.-J. Jeon, A.-I. Jung and Y.-W. Jung, Aerosol Sci. Technol., 36, 573 (2002).

    Article  CAS  Google Scholar 

  9. M. K. Akhtar, G. G. Lipscomb and S. E. Pratsinis, Aerosol Sci. Technol., 21, 83 (1994).

    Article  CAS  Google Scholar 

  10. R.D. Mountain, G.W. Mulholland and H. Baum, J. Colloid Interface Sci., 114, 67 (1986).

    Article  CAS  Google Scholar 

  11. P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A, 34, 5091 (1986).

    Article  CAS  Google Scholar 

  12. D.W. Schaefer, MRS Bull., 13, 22 (1988).

    Article  CAS  Google Scholar 

  13. K.T. Whitby, Lumped mode aerosol growth model, Particle Technology Laboratory Publication #395, University of Minnesota, Minneapolis (1979).

    Google Scholar 

  14. K.W. Lee and H. Chen, Aerosol Sci. Technol., 3, 327 (1984).

    Article  CAS  Google Scholar 

  15. M. Frenklach and S. J. Harris, J. Colloid Interface Sci., 118, 252 (1987).

    Article  CAS  Google Scholar 

  16. F. Gelbard and J. H. Seinfeld, J. Colloid Interface Sci., 78, 485 (1980).

    Article  CAS  Google Scholar 

  17. J.D. Landgrebe and S. E. Pratsinis, J. Colloid Interface Sci., 139, 63 (1990).

    Article  CAS  Google Scholar 

  18. M.K. Wu and S. K. Friedlander, J. Aerosol Sci., 24, 273 (1993).

    Article  CAS  Google Scholar 

  19. S. Vemury, K. A. Kusters and S. E. Pratsinis, J. Colloid Interface Sci., 165, 53 (1994).

    Article  CAS  Google Scholar 

  20. S. Vemury and S. E. Pratsinis, J. Aerosol Sci., 26, 175 (1995).

    Article  CAS  Google Scholar 

  21. K.W. Lee, L. A. Curtis and H. Chen, Aerosol Sci. Technol., 12, 457 (1990).

    Article  CAS  Google Scholar 

  22. S.H. Park and K.W. Lee, J. Colloid Interface Sci., 246, 85 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. C.-Y. Wu and P. Biswas, Aerosol Sci. Technol., 29, 359 (1998).

    Article  CAS  Google Scholar 

  24. G.D. Ulrich and N. S. Subramanian, Combust. Sci. Technol., 17, 119 (1977).

    Article  CAS  Google Scholar 

  25. S.K. Friedlander, Smoke, dust and haze: fundamentals of aerosol dynamics, Oxford Univ. Press, New York (2000).

    Google Scholar 

  26. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman and Co., New York (1982).

    Google Scholar 

  27. E.R. Whitby, P.H. McMurry, U. Shankar and F. S. Binkowski, Modal aerosol dynamics modeling, Computer Sciences Corp., Research Triangle Park (1991).

    Google Scholar 

  28. M.M.R. Williams and S.K. Loyalka, Aerosol science: Theory and practice, Pergamon Press, Oxford (1991).

    Google Scholar 

  29. S. Park and K. Lee, J. Colloid Interface Sci., 233, 117 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. S. Park, R. Xiang and K. Lee, J. Colloid Interface Sci., 231, 129 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. P. F. Miquel, C.-H. Hung and J.L. Katz, J. Mater. Res., 8, 2404 (1993).

    Article  CAS  Google Scholar 

  32. U. Backman, U. Tapper and J.K. Jokiniemi, Synth. Met., 142, 169 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Joon Jeon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, JS., Park, S., Cho, H. et al. Agglomeration characteristics of nano-size TiO2 particles using analytical solution. Korean J. Chem. Eng. 35, 1948–1953 (2018). https://doi.org/10.1007/s11814-018-0095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0095-8

Keywords

Navigation