Skip to main content
Log in

Effect of WOx Doping into Pt/SiO2 Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol in Liquid Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct hydrogenolysis of glycerol to 1,3-PDO is a cost-effective solution to both production of 1,3-PDO with an increasing industrial demand and valorization of the biomass-derived glycerol, and the oxophilic tungsten oxide was found beneficial to the selective formation of 1,3-PDO from glycerol combined with platinum group metals. However, role of tungsten oxide on the structure, properties and catalytic performances has remained unsolved. Pt-WOx/SiO2 catalysts were prepared by a sequential impregnation method, and the resulting samples were systematically characterized and their catalytic performances were probed by selective hydrogenolysis of glycerol to 1,3-PDO in liquid phase. There was a strong interaction found between the tungsten oxide species and the metallic platinum on the synthesized Pt-WOx/SiO2. A non-stoichiometric ratio of WOx was detected and the polytungstate were predominating on the optimized Pt-10WOx/SiO2 catalyst, and a rather high ratio of W5+ species and the possible oxygen vacancies were suggested. WOx doping enhanced the surface acidity of Pt/SiO2 and promoted the dispersion degree of metallic platinum on it. The glycerol conversion and 1,3-PDO selectivity can be markedly improved by WOx doping into Pt/SiO2 catalysts, and the enhancement in the selectivity to 1,3-PDO was believed to proceed by restraining the transformation of 1,3-PDO to 1-propanol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Garcia-Fernandez S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) Appl Catal B 204:260

    Article  CAS  Google Scholar 

  2. Huang L, Zhu Y, Zheng H, Ding G, Li Y (2009) Catal Lett 131:312

    Article  CAS  Google Scholar 

  3. Nakagawa Y, Tamura M, Tomishige K (2014) J Mater Chem A 2:6688

    Article  CAS  Google Scholar 

  4. Tomishige K, Nakagawa Y, Tamura M (2017) Green Chem 19:2876

    Article  CAS  Google Scholar 

  5. Priya SS, Kumar VP, Kantam ML, Bhargava SK, Periasamy S, Chary KVR (2015) Appl Catal A 498:88

    Article  CAS  Google Scholar 

  6. Priya SS, Kumar VP, Kantam ML, Bhargava SK, Srikanth A, Chary KVR (2015) Ind Eng Chem Res 54:9104

    Article  CAS  Google Scholar 

  7. Priya SS, Bhanuchander P, Kumar VP, Kantam ML, Bhargava SK, Chary KVR (2016) Ind Eng Chem Res 55:4461

    Article  CAS  Google Scholar 

  8. Kumar VP, Beltramini JN, Priya SS, Srikanth A, Bhanuchander P, Chary KVR (2016) Appl Petrochem Res 6:3

    Google Scholar 

  9. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K (2005) Catal Commun 6:65

    Article  CAS  Google Scholar 

  10. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213

    Article  CAS  Google Scholar 

  11. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 318:244

    Article  CAS  Google Scholar 

  12. Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K (2002) Green Chem 9:582

    Article  CAS  Google Scholar 

  13. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 329:30

    Article  CAS  Google Scholar 

  14. Nakagawa Y, Tomishige K (2011) Catal Sci Technol 1:179

    Article  CAS  Google Scholar 

  15. Zhu S, Qiu Y, Zhu Y, Hao S, Zheng H, Li Y (2013) Catal Today 212:120

    Article  CAS  Google Scholar 

  16. Zhu S, Gao X, Zhu Y, Cui J, Zheng H, Li Y (2014) Appl Catal B 158–159:391

    Article  CAS  Google Scholar 

  17. Zhu S, Gao X, Zhu Y, Li Y (2015) J Mol Catal A 398:391

    Article  CAS  Google Scholar 

  18. Shinmi Y, Koso S, Kubota T, Nakagava Y, Tomishige K (2010) Appl Catal B 94:318

    Article  CAS  Google Scholar 

  19. Amada Y, Watanabe H, Tamura M, Nakagava Y, Okumura K, Tomishige K (2012) J Phys Chem C 116:23503

    Article  CAS  Google Scholar 

  20. Wang J, Zhao X, Lei N, Li L, Zhang L, Xu S, Miao S, Pan X, Wang A, Zhang T (2016) ChemSusChem 9:784

    Article  CAS  PubMed  Google Scholar 

  21. Shimao A, Koso S, Ueda N, Shinmi Y, Furikado I, Tomishige K (2009) Chem Lett 38:540

    Article  CAS  Google Scholar 

  22. Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) J Catal 272:191

    Article  CAS  Google Scholar 

  23. Amada Y, Koso S, Nakagawa Y, Tomishige K (2010) ChemSusChem 3:728

    Article  CAS  PubMed  Google Scholar 

  24. Amada Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Appl Catal B 105:117

    Article  CAS  Google Scholar 

  25. Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Appl Catal B 111–112:27

    Article  CAS  Google Scholar 

  26. Tamura M, Amada Y, Liu S, Yuan Z, Nakagawa Y, Tomishige K (2014) J Mol Catal A 388–389:177

    Article  CAS  Google Scholar 

  27. Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Appl Catal A 433–434:128

    Article  CAS  Google Scholar 

  28. Zhao X, Wang J, Yang M, Li N, Lin L, Hou B, Miao S, Pan X, Wang A, Zhang T (2017) ChemSusChem 10:819

    Article  CAS  PubMed  Google Scholar 

  29. Zhu S, Zhu Y, Hao S, Chen L, Zhang B, Li Y (2012) Catal Lett 142:267

    Article  CAS  Google Scholar 

  30. Zhu S, Gao X, Zhu Y, Zhu Y, Xiang X, Hu C, Li Y (2013) Appl Catal B 140–141:60

    Article  CAS  Google Scholar 

  31. Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2010) Appl Catal A 390:119

    Article  CAS  Google Scholar 

  32. Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2012) Catal Lett 41:1720

    Google Scholar 

  33. Shi G, Franzke T, Sanchez MD, Xia W, Weis F, Seipenbusch M, Kasper G, Muhler M (2012) ChemCatChem 4:760

    Article  CAS  Google Scholar 

  34. Sundberg M (1980) J Solid State Chem 35:120

    Article  CAS  Google Scholar 

  35. Thomas JM, Jefferson DA (1978) New Ser 2:127

    Article  CAS  Google Scholar 

  36. Araujo MM, Silva LKR, Sczancoski JC, Orlandi MO, Longo E, Santos AGD, Sa JLS, Santos RS, Luz GE Jr, Cavalcante LS (2016) Appl Surf Sci 389:1137

    Article  CAS  Google Scholar 

  37. Sanjini NS, Velmathi S (2016) J Porous Mater 23:1527

    Article  CAS  Google Scholar 

  38. Li F, Wang L, Han X, He P, Cao Y, Li H (2016) RSC Adv 6:45894

    Article  CAS  Google Scholar 

  39. Garcia-Sancho C, Moreno-Tost R, Merida-Robles J, Santamaria-Gonzalez J, Jimenez-Lopez A, Maireles-Torres P (2012) Appl Catal A 433–434:179

    Article  CAS  Google Scholar 

  40. Wu X, Zhang L, Weng D, Liu S, Si Z, Fan J (2012) J Hazard Mater 225–226:146

    Article  CAS  PubMed  Google Scholar 

  41. Yang X, Gao R, Dai W, Fan K (2008) J Phys Chem C 112:3819

    Article  CAS  Google Scholar 

  42. Luo W, Lyu Y, Gong L, Du H, Jiang M, Ding Y (2016) J Catal 37:2009

    CAS  Google Scholar 

  43. Li Y, Liu H, Ma L, He D (2016) Appl Catal A 522:13

    Article  CAS  Google Scholar 

  44. Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) ChemSusChem 6:1345

    Article  CAS  PubMed  Google Scholar 

  45. Edake M, Dalil M, Mahboub MJD, Dubois J, Patience GS (2017) RSC Adv 7:3853

    Article  CAS  Google Scholar 

  46. Sun D, Yamada Y, Sato S, Ueda W (2016) Appl Catal B 193:75

    Article  CAS  Google Scholar 

  47. Priya SS, Bhanuchander P, Kumar VP, Dumbre DK, Periasamy SR, Bhargava SK, Kantam ML, Chary KVR (2016) ACS Sustain Chem Eng 4:1212

    Article  CAS  Google Scholar 

  48. Aeijelts Averink Silberova B, Mul G, Makkee M, Moulijn JA (2006) J Catal 243:171

    Article  CAS  Google Scholar 

  49. Koso S, Nakagawa Y, Tomishige K (2011) J Catal 280:221

    Article  CAS  Google Scholar 

  50. Tomishige K, Tamura M, Nakagawa Y (2014) Chem Rec 14:1041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from Yangzhou Science and Technology Program Funds (YZ2016265) and the Natural Science Foundation of Jiangsu Province (BK2012681) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Cao, Z., Xu, J. et al. Effect of WOx Doping into Pt/SiO2 Catalysts for Glycerol Hydrogenolysis to 1,3-Propanediol in Liquid Phase. Catal Lett 148, 2304–2314 (2018). https://doi.org/10.1007/s10562-018-2464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2464-7

Keywords

Navigation