Skip to main content
Log in

Highly Efficient Dehydration of Glycerol to Acrolein Over Isomorphously Substituted Fe-MFI Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Gas phase dehydration of glycerol formerly in aqueous solution to acrolein was studied over iron MFI zeolites prepared by post-synthesis isomorphous substitution with different iron contents, Si/Al and substitution ratios. High Si/Al (60) ratios led to high conversion in presence of air and the insertion of iron in the zeolite framework greatly improved the catalytic performances by altering the amount and the nature of the coke components reducing dramatically the deactivation. Over the most efficient sample, acrolein yield reached a stabilized value of 68% with an excellent selectivity (80%), which ranked this catalyst among the best for the selective conversion of crude glycerol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411–2502

    Article  CAS  PubMed  Google Scholar 

  2. Wang F, Dubois J-L, Ueda W (2010) Appl Catal A 376:25–32

    Article  CAS  Google Scholar 

  3. Jerome F, Pouilloux Y, Barrault J (2008) ChemSusChem 1:586–613

    Article  CAS  PubMed  Google Scholar 

  4. Massa M, Andersson A, Finocchio E, Busca G (2013) J Catal 307:170–184

    Article  CAS  Google Scholar 

  5. Katryniok B, Paul S, Capron M, Dumeignil F (2009) ChemSusChem 2:719–730

    Article  CAS  PubMed  Google Scholar 

  6. Katryniok B, Paul S, Belliere-Baca V, Rey P, Dumeignil F (2010) Green Chem 12:2079–2098

    Article  CAS  Google Scholar 

  7. Pestana CF, Guerra ACO, Ferreira GB, Turci CC, Mota J (2013) J Braz Chem Soc 24:100–105

    Article  CAS  Google Scholar 

  8. Massa M, Andersson A, Finocchio E, Busca G, Lenrick F, Wallenberg LR (2013) J Catal 297:93–109

    Article  CAS  Google Scholar 

  9. Dalla Costa BO, Peralta MA, Querini CA (2014) Appl Catal A 472:53–63

    Article  CAS  Google Scholar 

  10. Atia H, Armbruster U, Martin A (2008) J Catal 258:71–82

    Article  CAS  Google Scholar 

  11. Clomburg JM, Gonzalez R (2013) Trends Biotechnol 31:20–28

    Article  CAS  PubMed  Google Scholar 

  12. Possato LG, Diniz RN, Garetto T, Pulcinelli SH, Santilli CV, Martins L (2013) J Catal 300:102–112

    Article  CAS  Google Scholar 

  13. Gu Y, Cui N, Yu Q, Li C, Cui Q (2012) Appl Catal A 429:9–16

    Article  CAS  Google Scholar 

  14. Witsuthammakul A, Sooknoi T (2012) Appl Catal A 413:109–116

    Article  CAS  Google Scholar 

  15. Deleplanque J, Dubois J-L, Devaux J-F, Ueda W (2010) Catal Today 157:351–358

    Article  CAS  Google Scholar 

  16. Kim YT, Jung K-D, Park ED (2010) Microporous Mesoporous Mater 131:28–36

    Article  CAS  Google Scholar 

  17. Sabatier P, Gaudion G (1918) C R Hebd Seances Acad Sci 166:1033–1039

    CAS  Google Scholar 

  18. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2007) Green Chem 9:1130–1136

    Article  CAS  Google Scholar 

  19. Tsukuda E, Sato S, Takahashi R, Sodesawa T (2007) Catal Commun 8:1349–1353

    Article  CAS  Google Scholar 

  20. Ning L, Ding Y, Chen W, Gong L, Lin R, Lu Y, Xin Q (2008) Chin J Catal 29:212–214

    Article  CAS  Google Scholar 

  21. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2009) Appl Catal A 353:213–222

    Article  CAS  Google Scholar 

  22. Schering-Kahlbaum AG (1930) FR 695931

  23. Neher A, Haas T, Arntz D, Klenk H, Girke W (1995) US 5387720

  24. Liu Q, Zhang Z, Du Y, Li J, Yang X (2009) Catal Lett 127:419–428

    Article  CAS  Google Scholar 

  25. Suprun W, Lutecki M, Haber T, Papp H (2009) J Mol Catal A 309:71–78

    Article  CAS  Google Scholar 

  26. Chai S-H, Wang H-P, Liang Y, Xu B-Q (2007) J Catal 250:342–349

    Article  CAS  Google Scholar 

  27. Dubois JL, Duquenne C, Hölderich W (2008) US 7396962

  28. Yoda E, Ootawa A (2009) Appl Catal A 360:66–70

    Article  CAS  Google Scholar 

  29. Lourenco JP, Macedo MI, Fernandes A (2012) Catal Commun 19:105–109

    Article  CAS  Google Scholar 

  30. Dubois J-L, Duquenne C, Hölderich W (2006) FR 2884818

  31. Dubois J, Duquenne C, Hölderich W, Kervennal J (2006) FR 2882052

  32. Dubois J, Duquenne C, Hölderich W, Kervennal J (2006) FR 2882053 (Al)

  33. Li X (2007) CN 101076276

  34. Bibby D, Howe R, Mclellan G (1992) Appl Catal A 93:1–34

    Article  CAS  Google Scholar 

  35. Ulgen A, Hoelderich WF (2011) Appl Catal A 400:34–38

    Article  CAS  Google Scholar 

  36. Cavani F, Guidetti S, Trevisanut C, Ghedini E, Signoretto M (2011) Appl Catal A 409:267–278

    Article  CAS  Google Scholar 

  37. Cavani F, Guidetti S, Marinelli L, Piccinini M, Ghedini E, Signoretto M (2010) Appl Catal B 100:197–204

    Article  CAS  Google Scholar 

  38. Scherzer J, Ritter R (1978) Ind Eng Chem Prod Res Dev 17:219–223

    Article  CAS  Google Scholar 

  39. Boron P, Chmielarz L, Gurgul J, Latka K, Gil B, Krafft J-M, Dzwigaj S (2014) Catal Today 235:210–225

    Article  CAS  Google Scholar 

  40. Hnat I, Kocemba I, Rynkowski J, Onfroy T, Dzwigaj S (2011) Catal Today 176:229–233

    Article  CAS  Google Scholar 

  41. Yun JH, Lobo RF (2014) J Catal 312:263–270

    Article  CAS  Google Scholar 

  42. Laugel G, Nitsch X, Ocampo F, Louis B (2011) Appl Catal A 402:139–145

    Article  CAS  Google Scholar 

  43. Perez-Ramirez J, Mul G, Kapteijn F, Moulijn JA, Overweg AR, Domenech A, Ribera A, Arends I (2002) J Catal 207:113–126

    Article  CAS  Google Scholar 

  44. Xia JC, Mao DS, Zhang B, Chen QL, Tang Y (2004) Catal Lett 98:235–240

    Article  CAS  Google Scholar 

  45. Jia C-J, Liu Y, Schmidt W, Lu A-H, Schueth F (2010) J Catal 269:71–79

    Article  CAS  Google Scholar 

  46. Skeels GW, Flanigen EM (1989) Zeolite synthesis, Chap. 29. In: Occelli ML, Robson HE (eds) ACS symposium series. American Chemical Society, Washington, DC

    Google Scholar 

  47. Han S, Schmitt K, Schramm S, Shihabi D, Chang C (1995) Inorg Chim Acta 229:81–85

    Article  CAS  Google Scholar 

  48. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207–219

    Article  CAS  Google Scholar 

  49. Guisnet M, Ayrault P, Datka J (1997) Pol J Chem 71:1455–1461

    CAS  Google Scholar 

  50. Magnoux P, Fouche V, Guisnet M (1987) Bull Soc Chim Fr 6:969–978

    Google Scholar 

  51. Dzwigaj S, Popovych N, Kyriienko P, Krafft J-M, Soloviev S (2013) Microporous Mesoporous Mater 182:16–24

    Article  CAS  Google Scholar 

  52. Shwan S, Jansson J, Olsson L, Skoglundh M (2014) Catal Sci Technol 4:2932–2937

    Article  CAS  Google Scholar 

  53. Mueller JM, Mesquita GC, Franco SM, Borges LD, de Macedo JL, Dias JA, Dias SCL (2015) Microporous Mesoporous Mater 204:50–57

    Article  CAS  Google Scholar 

  54. Lobree LJ, Hwang IC, Reimer JA, Bell AT (1999) J Catal 186:242–253

    Article  CAS  Google Scholar 

  55. He YJ, Nivarthy GS, Eder F, Seshan K, Lercher JA (1998) Microporous Mesoporous Mater 25:207–224

    Article  CAS  Google Scholar 

  56. Unverricht S, Hunger M, Ernst S, Karge H, Weitkamp J (1994) Stud Surf Sci Catal 84A:37–44

    Article  Google Scholar 

  57. Gorte RJ (1999) Catal Lett 62:1–13

    Article  CAS  Google Scholar 

  58. Perez-Ramirez J, Groen JC, Bruckner A, Kumar MS, Bentrup U, Debbagh MN, Villaescusa LA (2005) J Catal 232:318–334

    Article  CAS  Google Scholar 

  59. Schwidder M, Kumar MS, Bentrup U, Perez-Ramirez J, Brueckner A, Gruenert W (2008) Microporous Mesoporous Mater 111:124–133

    Article  CAS  Google Scholar 

  60. Borade R, Clearfield A (1994) Microporous Mater 2:167–177

    Article  CAS  Google Scholar 

  61. Benaliouche F, Boucheffa Y, Ayrault P, Mignard S, Magnoux P (2008) Microporous Mesoporous Mater 111:80–88

    Article  CAS  Google Scholar 

  62. Capek L, Kreibich V, Dedecek J, Grygar T, Wichterlova B, Sobalik Z, Martens JA, Brosius R, Tokarova V (2005) Microporous Mesoporous Mater 80:279–289

    Article  CAS  Google Scholar 

  63. Wu P, Komatsu T, Yashima T (1998) Microporous Mesoporous Mater 20:139–147

    Article  CAS  Google Scholar 

  64. Kumar MS, Schwidder M, Grunert W, Bruckner A (2004) J Catal 227:384–397

    Article  CAS  Google Scholar 

  65. Lari GM, Mondelli C, Perez-Ramirez J (2015) ACS Catal 5:1453–1461

    Article  CAS  Google Scholar 

  66. Perez-Ramirez J, Kumar MS, Bruckner A (2004) J Catal 223:13–27

    Article  CAS  Google Scholar 

  67. Yoshida M, Nobukawa T, Ito SI, Tomishige K, Kunimori K (2004) J Catal 223:454–464

    Article  CAS  Google Scholar 

  68. Sanchez G, Dlugogorski BZ, Kennedy EM, Stockenhuber M (2016) Appl Catal A 509:130–142

    Article  CAS  Google Scholar 

  69. Mohan N, Cindrella L (2015) Mater Sci Semicond Process 40:361–368

    Article  CAS  Google Scholar 

  70. Sazama P, Sathu NK, Tabor E, Wichterlova B, Sklenak S, Sobalik Z (2013) J Catal 299:188–203

    Article  CAS  Google Scholar 

  71. Voskoboinikov TV, Chen HY, Sachtler WMH (1998) Appl Catal B 19:279–287

    Article  CAS  Google Scholar 

  72. Machado N, Calsavara V, Astrath NGC, Matsuda UK, Paesano A, Baesso ML (2005) Fuel 84:2064–2070

    Article  CAS  Google Scholar 

  73. Dzwigaj S, Janas J, Machej T, Che M (2007) Catal Today 119:133–136

    Article  CAS  Google Scholar 

  74. Diallo MM, Mijoin J, Laforge S, Pouilloux Y (2016) Catal Commun 79:58–62

    Article  CAS  Google Scholar 

  75. Madeira FF, Ben Tayeb K, Pinard L, Vezin H, Maury S, Cadran N (2012) Appl Catal A 443:171–180

    Article  CAS  Google Scholar 

  76. Cerqueira HS, Ayrault P, Datka J, Guisnet M (2000) Microporous Mesoporous Mater 38:197–205

    Article  CAS  Google Scholar 

  77. Misk M, Joly G, Magnoux P, Guisnet M, Jullian S (2000) Microporous Mesoporous Mater 40:197–204

    Article  CAS  Google Scholar 

  78. Moljord K, Magnoux P, Guisnet M (1994) Catal Lett 28:53–59

    Article  CAS  Google Scholar 

  79. Guisnet M, Magnoux P (1997) Catal Today 36:477–483

    Article  CAS  Google Scholar 

  80. Kim YT, Jung K-D, Park ED (2011) Appl Catal A 393:275–287

    Article  CAS  Google Scholar 

  81. Pinard L, Ben Tayeb K, Hamieh S, Vezin H, Canaff C, Maury S, Delpoux O, Pouilloux Y (2013) Catal Today 218:57–64

    Article  CAS  Google Scholar 

  82. Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C (2002) J Supercrit Fluids 22:37–53

    Article  CAS  Google Scholar 

  83. Aboukais A, Zhilinskaya EA, Filimonov IN, Nesterenko NS, Timoshin SE, Ivanova II (2006) Catal Lett 111:97–102

    Article  CAS  Google Scholar 

  84. Hureau M, Moissette A, Vezin H, Bremard C, Orio M (2012) J Phys Chem C 116:1812–1825

    Article  CAS  Google Scholar 

  85. Perathoner S, Pino F, Centi G, Giordano G, Katovic A, Nagy JB (2003) Top Catal 23:125–136

    Article  CAS  Google Scholar 

  86. Centi G, Perathoner S, Pino F, Arrigo R, Giordano G, Katovic A, Pedula V (2005) Catal Today 110:211–220

    Article  CAS  Google Scholar 

  87. Zhang H, Hu Z, Huang L, Zhang H, Song K, Wang L, Shi Z, Ma J, Zhuang Y, Shen W, Zhang Y, Xu H, Tang Y (2015) ACS Catal 5:2548–2558

    Article  CAS  Google Scholar 

  88. Lourenço JP, Fernandes A, Bértolo RA, Ribeiro MF (2015) RSC Adv 5:10667

    Article  CAS  Google Scholar 

  89. Rao GS, Rajan P, Sekhar H, Ammaji S, Chary KVR (2014) J Mol Catal A 395:486–493

    Article  CAS  Google Scholar 

  90. Liu R, Wang T, Liu C, Jin Y (2013) Chin J Catal 34:2174–2182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Modibo Mounguengui Diallo gratefully acknowledges the French Higher Education and Research Ministry for his PhD grant. The authors make a point of thanking the European Communities (FEDER) as well as the presidency of the Poitou–Charentes region for their financial support. The authors thank Ms. Julie Rousseau for her assistance with TEM and EDX measurements, Mr. Mehrad Tarighi for MALDI experiments as well as Ms. Christine Canaff for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Mijoin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2951 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diallo, M.M., Laforge, S., Pouilloux, Y. et al. Highly Efficient Dehydration of Glycerol to Acrolein Over Isomorphously Substituted Fe-MFI Zeolites. Catal Lett 148, 2283–2303 (2018). https://doi.org/10.1007/s10562-018-2470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2470-9

Keywords

Navigation