Skip to main content
Log in

Fabrication of biomimetic titanium laminated material using flakes powder metallurgy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inspired from the microstructure of natural biological materials, a laminated titanium material was successfully elaborated using a novel approach of “flakes powder metallurgy.” Ti flakes powders, used as building blocks of the layers microstructure, were prepared by ball milling. They were then assembled into fully dense laminated materials using the spark plasma sintering technique. The results show (1) an anisotropy microstructure of the sintered material prepared from the flakes powder, (2) 15% of contribution of the lamellar architecture to the strength (hardness) of the material, and (3) faster densification of the flakes powder compared to unmilled powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866):1069–1073

    Article  Google Scholar 

  2. Walther A, Bjurhager I, Malho JM, Pere J, Ruokolainen J, Ruokolainen LA, Ikkala O (2010) Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett 10(8):2742–2748

    Article  Google Scholar 

  3. Tamerler C, Sarikaya M (2007) Molecular biomimetics: utilizing nature’s molecular ways in practical engineering. Acta Biomater 3(3):289–299

    Article  Google Scholar 

  4. Ohsaki S, Kato S, Tsuji N, Ohkubo T, Hono K (2007) Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process. Acta Mater 55(8):2885–2895

    Article  Google Scholar 

  5. Sellinger A, Weiss PM, Nguyen A, Lu Y, Assink R, Gong W, Brinker CJ (1998) Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre. Nature 394(6690):256–260

    Article  Google Scholar 

  6. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2(6):413–418

    Article  Google Scholar 

  7. Nambu S, Michiuchi M, Inoue J, Koseki T (2009) Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos Sci Technol 69(11–12):1936–1941

    Article  Google Scholar 

  8. Oner Ekiz O, Dericioglu AF, Kakisawa H (2009) An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites. Mater Sci Eng, C 29(6):2050–2054

    Article  Google Scholar 

  9. He W, Li CH, Luan BF, Qui RS, Wang K, Li ZQ, Lui Q (2015) Deformation behaviors and processing maps of CNTs/Al alloy composite fabricated by flake powder metallurgy. Trans Nonferr Met Soc China 25(11):3578–3584

    Article  Google Scholar 

  10. Kai XZ, Li ZQ, Fan GL, Guo Q, Xiong DB, Su YS, Lu WJ, Moon WJ, Zhang D (2013) Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy. Mater Sci Eng, A 587:46–53

    Article  Google Scholar 

  11. Zhang W, Li Z, Jiang L, Kai X, Dai X, Fan G, Guo Q, Xiong D, Su Y, Zhang D (2014) Flake thickness effect of Al2O3/Al biomimetic nanolaminated composites fabricated by flake powder metallurgy. Mater Sci Eng, A 594:324–329

    Article  Google Scholar 

  12. Wang J, Li Z, Fan G, Pan H, Chen Z, Zhang D (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66(8):594–597

    Article  Google Scholar 

  13. Varol T, Canakci A (2015) The effect of type and ratio of reinforcement on the synthesis and characterization Cu-based nanocomposites by flake powder metallurgy. J Alloys Compd 649:1066–1074

    Article  Google Scholar 

  14. Kai X, Li Z, Fan G, Guo Q, Tan Z, Zhang W, Su Y, Lu W, Moon W-J, Zhang D (2013) Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scr Mater 68(8):555–558

    Article  Google Scholar 

  15. Jiang L, Li Z, Fan G, Zhang D (2011) A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility. Scr Mater 65(5):412–415

    Article  Google Scholar 

  16. Benjamin JS, Volin TE (1974) The mechanism of mechanical alloying. Metall Trans 5(8):1929–1934

    Article  Google Scholar 

  17. Nouri A, Wen C (2014) Surfactants in mechanical alloying/milling: a catch-22 situation. Crit Rev Solid State Mater Sci 39(2):81–108

    Article  Google Scholar 

  18. Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng, C 26(8):1269–1277

    Article  Google Scholar 

  19. Brewer WD, Bird RK, Wallace TA (1998) Titanium alloys and processing for high speed aircraft. Mater Sci Eng, A 243(1–2):299–304

    Article  Google Scholar 

  20. Ma J, He Z, Tan GEB (2002) Fabrication and characterization of Ti-TiB2 functionally graded material system. Metall Mater Trans A 33(3):681–685

    Article  Google Scholar 

  21. Liu BX, Huang LJ, Geng L, Wang B, Liu C, Zhang WC (2014) Fabrication and superior ductility of laminated Ti–TiBw/Ti composites by diffusion welding. J Alloys Compd 602:187–192

    Article  Google Scholar 

  22. Liu BX, Huang LJ, Geng L, Kaveendran B, Wang B, Song XQ, Cui XP (2014) Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing. Mater Sci Eng, A 595:257–265

    Article  Google Scholar 

  23. Price RD, Jiang F, Kulin RM, Vecchio K (2011) Effects of ductile phase volume fraction on the mechanical properties of Ti–Al3Ti metal-intermetallic laminate (MIL) composites. Mater Sci Eng Struct Mater Prop Microstruct Process Mater Sci Eng Struct Mater 528:3134–3146

    Article  Google Scholar 

  24. Vecchio KS (2005) Synthetic multifunctional metallic-intermetallic laminate composites. JOM 57(3):25–31

    Article  Google Scholar 

  25. Xiao X, Zeng Z, Zhao Z, Xiao S (2008) Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment. Mater Sci Eng, A 475(1–2):166–171

    Article  Google Scholar 

  26. Wang H, Fang ZZ, Sun P (2010) A critical review of mechanical properties of powder metallurgy titanium. Int J Powder Metall Princet N J 46(5):45–57

    Google Scholar 

  27. Fang ZZ, Sun P, Wang H (2012) Hydrogen sintering of titanium to produce high density fine grain titanium alloys. Adv Eng Mater 14(6):383–387

    Article  Google Scholar 

  28. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Advanced mechanical properties of pure titanium with ultrafine grained structure. Scr Mater 45(7):747–752

    Article  Google Scholar 

  29. Fan G, Xu R, Tan Z, Zhang D, Li Z (2014) Development of flake powder metallurgy in fabricating metal matrix composites: a review. Acta Metall Sin Engl Lett 27(5):806–815

    Article  Google Scholar 

  30. Wei H, Li Z, Xiong D-B, Tan Z, Fan G, Qin Z, Zhang D (2014) Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater 75(Supplement C):30–33

    Article  Google Scholar 

  31. Britton TB, Liang H, Dunne FPE, Wilkinson AJ (2010) The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations. Proc R Soc Lond Math Phys Eng Sci 466(2115):695–719

    Article  Google Scholar 

  32. Mante FK, Baran GR, Lucas B (1999) Nanoindentation studies of titanium single crystals. Biomaterials 20(11):1051–1055

    Article  Google Scholar 

  33. Liu BX, Huang LJ, Wang B, Geng L (2014) Effect of pure Ti thickness on the tensile behavior of laminated Ti–TiBw/Ti composites. Mater Sci Eng, A 617:115–120

    Article  Google Scholar 

  34. Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300(5618):464–467

    Article  Google Scholar 

  35. Lee YT, Welsch G (1990) Young’s modulus and damping of Ti–6Al–4V alloy as a function of heat treatment and oxygen concentration. Mater Sci Eng, A 128(1):77–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diaa Mereib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereib, D., Seu, UC.C., Zakhour, M. et al. Fabrication of biomimetic titanium laminated material using flakes powder metallurgy. J Mater Sci 53, 7857–7868 (2018). https://doi.org/10.1007/s10853-018-2086-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2086-x

Keywords

Navigation