Skip to main content
Log in

Improved Biodegradation of Synthetic Azo Dye by Anionic Cross-Linking of Chloroperoxidase on ZnO/SiO2 Nanocomposite Support

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel ZnO nanowire/macroporous SiO2 composite was used as a support to immobilize chloroperoxidase (CPO) by in situ cross-linking method. An anionic bi-epoxy compound was synthesized and used as a long-chained anionic cross-linker, and it was adsorbed on the surface of ZnO nanowires through static interaction before reaction with CPO, creating a new approach to change the structure, property, and catalytic performance of the produced cross-linking enzyme aggregates (CLEAs) of CPO. The immobilized CPO showed high activity in the decolorization of three azo dyes. The effect of various conditions such as the loading amount of CPO, solution pH, temperature, and dye concentration was optimized on the decolorization. Under optimized conditions, the decolorization percentage of Acid Blue 113, Direct Black 38, and Acid Black 10 BX reached as high as 95.4, 92.3, and 89.1%, respectively. The immobilized CPO exhibited much better thermostability and resistance to pH inactivation than free CPO. The storage stability and reusability were greatly improved through the immobilization. It was found from the decolorization of Acid Blue 113 that 83.6% of initial activity retained after incubation at 4 °C for 60 days and that 80.9% of decolorization efficiency retained after 12 cycles of reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang, J.-S., & Lin, C.-Y. (2001). Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp. Biotechnology Letters, 23, 631–636.

    Article  CAS  Google Scholar 

  2. Ong, S. A., Uchiyama, K., Inadama, D., Ishida, Y., & Yamagiwa, K. (2010). Treatment of azo dye acid Orange 7 containing wastewater using up-flow constructed wetland with and without supplementary aeration. Bioresource Technology, 101, 9049–9057.

    Article  CAS  Google Scholar 

  3. Pearce, C. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58, 179–196.

    Article  CAS  Google Scholar 

  4. Torres, E., Bustos-Jaimes, I., & Le Borgne, S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B: Environmental, 46, 1–15.

    Article  CAS  Google Scholar 

  5. Akhtar, S., Khan, A. A., & Husain, Q. (2005). Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere, 60, 291–301.

    Article  CAS  Google Scholar 

  6. Husain, Q. (2006). Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Critical Reviews in Biotechnology, 26, 201–221.

    Article  CAS  Google Scholar 

  7. Haddaji, D., Bousselmi, L., Saadani, O., Nouairi, I., & Ghrabi-Gammar, Z. (2014). Enzymatic degradation of azo dyes using three macrophyte species: Arundo donax. Typha angustifoliaand Phragmites australis. Desalination and Water Treatment, 1–10.

  8. Akkaya, A., Erdogan Ozseker, E., & Akdogan, H. A. (2015). Degradation of dyes by laccase. Analytical Letters, 49, 790–798.

    Article  Google Scholar 

  9. Cheng, X., Jia, R., Li, P., Tu, S., Zhu, Q., Tang, W., et al. (2007). Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme. Enzyme and Microbial Technology, 41, 258–264.

    Article  CAS  Google Scholar 

  10. Senthilvelan, T., Kanagaraj, J., & Panda, R. C. (2014). Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid Blue 113): reuse of treated dye wastewater in post-tanning operations. Applied Biochemistry and Biotechnology, 174, 2131–2152.

    Article  CAS  Google Scholar 

  11. Chen, W., Zheng, L., Jia, R., & Wang, N. (2015). Cloning and expression of a new manganese peroxidase from Irpex lacteus F17 and its application in decolorization of reactive black 5. Process Biochemistry, 50, 1748–1759.

    Article  CAS  Google Scholar 

  12. Kalsoom, U., Bhatti, H. N., & Asgher, M. (2015). Characterization of plant peroxidases and their potential for degradation of dyes: a review. Applied Biochemistry and Biotechnology, 176, 1529–1550.

    Article  CAS  Google Scholar 

  13. Pajot, H. F., Fariña, J. I., & de Figueroa, L. I. C. (2011). Evidence on manganese peroxidase and tyrosinase expression during decolorization of textile industry dyes by Trichosporon akiyoshidainum. International Biodeterioration & Biodegradation, 65, 1199–1207.

    Article  CAS  Google Scholar 

  14. Celebi, M., Kaya, M. A., Altikatoglu, M., & Yildirim, H. (2013). Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports. Applied Biochemistry and Biotechnology, 171, 716–730.

    Article  CAS  Google Scholar 

  15. Zhang, R., He, Q., Huang, Y., & Wang, X. (2016). Spectroscopic and QM/MM investigations of chloroperoxidase catalyzed degradation of orange G. Archives of Biochemistry and Biophysics, 596, 1–9.

    Article  CAS  Google Scholar 

  16. Li, X., Zhang, J., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2013). Highly efficient biodecolorization/degradation of Congo red and alizarin yellow R by chloroperoxidase from Caldariomyces fumago: catalytic mechanism and degradation pathway. Industrial & Engineering Chemistry Research, 52, 13572–13579.

    Article  CAS  Google Scholar 

  17. Aburto, J., Ayala, M., Bustos-Jaimes, I., Montiel, C., Terrés, E., Domínguez, J. M., et al. (2005). Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. Microporous and Mesoporous Materials, 83, 193–200.

    Article  CAS  Google Scholar 

  18. Ayala M, Batista CV, Vazquez-Duhalt R. (2011). Heme destruction, the main molecular event during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago. Journal of biological inorganic chemistry : JBIC: a publication of the Society of Biological. Inorganic Chemistry, 16, 63–68.

  19. Leak, D. J., Sheldon, R. A., Woodley, J. M., & Adlercreutz, P. (2009). Biocatalysts for selective introduction of oxygen. Biocatalysis and Biotransformation, 27, 1–26.

    Article  CAS  Google Scholar 

  20. De Matteis, L., Germani, R., Mancini, M. V., Di Renzo, F., & Spreti, N. (2015). Encapsulation of chloroperoxidase in novel hybrid polysaccharide-silica biocomposites: catalytic efficiency, re-use and thermal stability. Applied Catalysis A: General, 492, 23–30.

    Article  Google Scholar 

  21. Muñoz-Guerrero, F. A., Águila, S., Vazquez-Duhalt, R., & Alderete, J. B. (2015). Enhancement of operational stability of chloroperoxidase from Caldariomyces fumago by immobilization onto mesoporous supports and the use of co-solvents. Journal of Molecular Catalysis B: Enzymatic, 5(116), 1–8.

    Article  Google Scholar 

  22. Pešić, M., López, C., Álvaro, G., & López-Santín, J. (2012). A novel immobilized chloroperoxidase biocatalyst with improved stability for the oxidation of amino alcohols to amino aldehydes. Journal of Molecular Catalysis B: Enzymatic, 84, 144–151.

    Article  Google Scholar 

  23. Zhang, L. H., Bai, C. H., Wang, Y. S., Jiang, Y. C., Hu, M. C., Li, S. N., et al. (2009). Improvement of chloroperoxidase stability by covalent immobilization on chitosan membranes. Biotechnology Letters, 31, 1269–1272.

    Article  CAS  Google Scholar 

  24. Bayramoğlu, G., Kiralp, S., Yilmaz, M., Toppare, L., & Arıca, M. Y. (2008). Covalent immobilization of chloroperoxidase onto magnetic beads: catalytic properties and stability. Biochemical Engineering Journal, 38, 180–188.

    Article  Google Scholar 

  25. Bayramoglu, G., Altintas, B., Yilmaz, M., & Arica, M. Y. (2011). Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bio-conjugation: catalytic properties and stabilities. Bioresource Technology, 102, 475–482.

    Article  CAS  Google Scholar 

  26. De Matteis, L., Germani, R., Mancini, M. V., Savelli, G., Spreti, N., Brinchi, L., et al. (2013). Investigations to optimize the catalytic performance of CPO encapsulated in PEG 200-doped silica matrices. Journal of Molecular Catalysis B: Enzymatic, 97, 23–30.

    Article  Google Scholar 

  27. Perez, D. I., van Rantwijk, F., & Sheldon, R. A. (2009). Cross-linked enzyme aggregates of Chloroperoxidase: synthesis, optimization and characterization. Advanced Synthesis & Catalysis, 351, 2133–2139.

    Article  CAS  Google Scholar 

  28. La Rotta Hernandez, C. E., Lütz, S., Liese, A., & Bon, E. P. S. (2005). Activity and stability of Caldariomyces fumago chloroperoxidase modified by reductive alkylation, amidation and cross-linking. Enzyme and Microbial Technology, 37, 582–588.

    Article  Google Scholar 

  29. Ayala, M., Horjales, E., Pickard, M. A., & Vazquez-Duhalt, R. (2002). Cross-linked crystals of chloroperoxidase. Biochemical and Biophysical Research. Communications, 295, 828–831.

    Article  CAS  Google Scholar 

  30. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  31. Kim, M. I., Kim, J., Lee, J., Shin, S., Na, H. B., Hyeon, T., et al. (2008). One-dimensional crosslinked enzyme aggregates in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Microporous and Mesoporous Materials, 111, 18–23.

    Article  CAS  Google Scholar 

  32. Schmidt-Winkel, P., Lukens, W. W., Yang, P., Margolese, D. I., Lettow, J. S., Ying, J. Y., et al. (2000). Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chemistry of Materials, 12, 686–696.

    Article  CAS  Google Scholar 

  33. Jung, D., Paradiso, M., Wallacher, D., Brandt, A., & Hartmann, M. (2009). Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties. Chem Sus Chem, 2, 161–164.

    Article  CAS  Google Scholar 

  34. Shang, C. Y., Li, W. X., & Zhang, R. F. (2014). Immobilized Candida antarctica lipase B on ZnO nanowires/macroporous silica composites for catalyzing chiral resolution of (RS)-2-octanol. Enzyme and Microbial Technology, 61-62, 28–34.

    Article  CAS  Google Scholar 

  35. Shang, C.-Y., Li, W.-X., Jiang, F., & Zhang, R.-F. (2015). Improved enzymatic properties of Candida rugosa lipase immobilized on ZnO nanowires/macroporous SiO2 microwave absorbing supports. Journal of Molecular Catalysis B: Enzymatic, 113, 9–13.

    Article  CAS  Google Scholar 

  36. Shang, C.-Y., Li, W.-X., & Zhang, R.-F. (2015). Immobilization of Candida rugosa lipase on ZnO nanowires/macroporous silica composites for biocatalytic synthesis of phytosterol esters. Materials Research Bulletin, 68, 336–342.

    Article  CAS  Google Scholar 

  37. Sun H, Jin X, Jiang F, Zhang R. (2017). Immobilization of horseradish peroxidase on ZnO nanowires/macroporous SiO2 composites for the complete decolorization of anthraquinone dyes. Biotechnology and Applied Biochemistry, n, /a-n/a. https://doi.org/10.1002/bab.1559.

  38. Sun, H., Jin, X., Long, N., & Zhang, R. (2017). Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support. International Journal of Biological Macromolecules, 95, 1049–1055.

    Article  CAS  Google Scholar 

  39. Morris, D. R., & Hager, L. P. (1966). Chloroperoxidase: I. Isolation and properties of the crystalline glycoprotein. Journal of Biological Chemistry, 241, 1763–1768.

    CAS  Google Scholar 

  40. Hager, L. P., Morris, D. R., Brown, F. S., & Eberwein, H. (1966). Chloroperoxidase: II. Utilization of halogen anions. Journal of Biological Chemistry, 241, 1769–1777.

    CAS  Google Scholar 

  41. Zhang, R., Long, N., & Zhang, L. (2009). Preparation of 3-dimensional SiO2 structures via a templating method. Thin Solid Films, 517, 6677–6680.

    Article  CAS  Google Scholar 

  42. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  43. Thomas, J. A., Morris, D. R., & Hager, L. P. (1970). Chloroperoxidase: VII. Classical peroxidatic, catalatic, and halogenating forms of the enzyme. Journal of Biological Chemistry, 245, 3129–3134.

    CAS  Google Scholar 

  44. Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—acid blue 113. Journal of Hazardous Materials, 186, 891–901.

    Article  CAS  Google Scholar 

  45. Isik, M., & Sponza, D. T. (2004). Monitoring of toxicity and intermediates of C.I. Direct black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system. Journal of Hazardous Materials, 114, 29–39.

    Article  CAS  Google Scholar 

  46. Katuri, K. P., Venkata Mohan, S., Sridhar, S., Pati, B. R., & Sarma, P. N. (2009). Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: process optimization. Water Research, 43, 3647–3658.

    Article  CAS  Google Scholar 

  47. Guerrero, E., Aburto, P., Terrés, E., Villegas, O., González, E., Zayas, T., et al. (2013). Improvement of catalytic efficiency of chloroperoxidase by its covalent immobilization on SBA-15 for azo dye oxidation. Journal of Porous Materials, 20, 387–396.

    Article  CAS  Google Scholar 

  48. Hsueh, C. C., Chen, B. Y., & Yen, C. Y. (2009). Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. Journal of Hazardous Materials, 167, 995–1001.

    Article  CAS  Google Scholar 

  49. Jiao, R., Tan, Y., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2014). Ordered mesoporous silica matrix for immobilization of chloroperoxidase with enhanced biocatalytic performance for oxidative decolorization of azo dye. Industrial and Engineering Chemistry Research, 53, 12201–12208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Zhejiang Provincial Natural Science Foundation (No. LY15B010002) and Wang Kuan-Chen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifeng Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Li, S., Long, N. et al. Improved Biodegradation of Synthetic Azo Dye by Anionic Cross-Linking of Chloroperoxidase on ZnO/SiO2 Nanocomposite Support. Appl Biochem Biotechnol 184, 1009–1023 (2018). https://doi.org/10.1007/s12010-017-2607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2607-0

Keywords

Navigation