Skip to main content
Log in

High-Performance Printed Circuit Board Materials Based on Benzoxazine and Epoxy Blend System

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Epoxy resin has been used as an industrial printed circuit board (PCB) material based on its excellent mechanical strength and adhesion property to metal. Silica nanoparticle is employed as a component of hybrid matrix material with epoxy resin due to its superior electrical insulating properties. In this study, benzoxazine, which has attracted attention as a new generation of electrically insulating material and displays extraordinary thermal stability, was investigated as a candidate for PCB material. Benzoxazine and epoxy/silica nanoparticle hybrid films were prepared to achieve low dissipation factor and improved mechanical stability. Two types of benzoxazines, monobenzoxazine, and linear polybenzoxazine were investigated; for monobenzoxazine-based film, the blend with epoxy resin was required to improve physical property because monobenzoxazine film showed brittle nature which limited the application as a film with proper mechanical strength. Films with higher content of monobenzoxazine over epoxy resin resulted in lower dissipation factor around 0.005 frequency/10 GHz, however, the mechanical property of the film did not meet the condition as a PCB material. On the contrary, the linear polybenzoxazine-based film demonstrated enhanced mechanical stability but showed limitations in adhesion to the copper layer probably due to the lack of polar functional groups. To overcome the drawbacks, linear polybenzoxazine and epoxy blend systems were prepared to produce films with good adhesion and excellent electrical insulation property with the dissipation factor around 0.006 frequency/10 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.-Y. Shieh, H.-J. Hwang, S.-P. Yang, and C.-S. Wang, J. Polym. Sci., Part A: Polym. Chem., 43, 671 (2005).

    Article  CAS  Google Scholar 

  2. M. Lé-Magda, E. Dargent, J. A. S. Puente, A. Guillet, E. Font, and J.-M. Saiter, J. Appl. Polym. Sci., 130, 786 (2013).

    Article  Google Scholar 

  3. J. Li, H. Duan, K. Yu, and S. Wang, J. Air Waste Manag. Assoc., 60, 229 (2010).

    Article  CAS  Google Scholar 

  4. Z. Zhang, R. Yu, D. Wang, J. Wang, and Y. Jiao, J. Appl. Polym. Sci., 120, 3716 (2011).

    Article  CAS  Google Scholar 

  5. R.-H. Lin, W.-H. Lu, and C.-W. Lin, Polymer, 45, 4423 (2004).

    Article  CAS  Google Scholar 

  6. M. Laskoski, D. D. Dominguez, and T. M. Keller, J. Mater. Chem., 15, 1611 (2005).

    Article  CAS  Google Scholar 

  7. J. H. Wang, G. Z. Liang, H. X. Yan, and S. B. He, eXPRESS Polym. Lett., 2, 118 (2008).

    Article  CAS  Google Scholar 

  8. H.-J. Hwang, C.-H. Li, and C.-S. Wang, Polymer, 47, 1291 (2006).

    Article  CAS  Google Scholar 

  9. J.-J. Park, Trans. Electr. Electron. Mater., 13, 322 (2012).

    Article  Google Scholar 

  10. C. Yan, X. Fan, J. Li and S. Z. Shen, J. Appl. Polym. Sci., 120, 1525 (2011).

    Article  CAS  Google Scholar 

  11. W. Wu, J. Leng, Z. Wang, H. Qu, and J. Gao, Macromol. Res., 24, 209 (2016).

    Article  CAS  Google Scholar 

  12. F. W. Holly and A. C. Cope, J. Am. Chem. Soc., 66, 1875 (1944).

    Article  CAS  Google Scholar 

  13. X. Ning and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 32, 1121 (1994).

    Article  CAS  Google Scholar 

  14. K. Zhang, Q. Zhuang, Y. Zhou, X. Liu, G. Yang, and Z. Han, J. Polym. Sci., Part A: Polym. Chem., 50, 5115 (2012).

    Article  CAS  Google Scholar 

  15. H.-D. Kim and H. Ishida, J. Phys. Chem. A., 106, 3271 (2002).

    Article  CAS  Google Scholar 

  16. B. Kiskan, Y. Yagci, and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 46, 414 (2008).

    Article  CAS  Google Scholar 

  17. S. Rimdusit and H. Ishida, J. Polym. Sci., Part B: Polym. Phys., 38, 1687 (2000).

    Article  CAS  Google Scholar 

  18. H. Yeganeh, M. Razavi-Nouri, and M. Ghaffari, Polym. Eng. Sci., 48, 1329 (2008).

    Article  CAS  Google Scholar 

  19. P. Nuntahirun, O. Yamamoto and P. Paoprasert, Macromol. Res., 24, 816 (2016).

    Article  CAS  Google Scholar 

  20. T. Takeichi, T. Kano, and T. Agag, Polymer, 46, 12172 (2005).

    Article  CAS  Google Scholar 

  21. S. Yu, J. Kim, Y. Choi, C. Lim, and B. Seo, Macromol. Res., 24, 60 (2016).

    Article  CAS  Google Scholar 

  22. Z. Brunovska, J. P. Liu, and H. Ishida, Macromol. Chem. Phys., 200, 1745 (1999).

    Article  CAS  Google Scholar 

  23. A. Sudo, L.-C. Du, S. Hirayama, and T. Endo, J. Polym. Sci., Part A: Polym. Chem., 48, 2777 (2010).

    Article  CAS  Google Scholar 

  24. Y. Deng, Q. Zhang, H. Zhang, C. Zhang, W. Wang, and Y. Gu, Ind. Eng. Chem. Res., 53, 1933 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Hee Ahn.

Additional information

Acknowledgment: Financial and analytical support from Samsung Electro-Mechanics (0417-20140013) is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Kim, K.S., Shim, J.H. et al. High-Performance Printed Circuit Board Materials Based on Benzoxazine and Epoxy Blend System. Macromol. Res. 26, 388–393 (2018). https://doi.org/10.1007/s13233-018-6046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6046-7

Keywords

Navigation