Skip to main content
Log in

Fabrication of periodically micropatterned magnetite nanoparticles by laser-interference-controlled electrodeposition

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper introduces a laser-interference-controlled electrochemical deposition method for direct fabrication of periodically micropatterned magnetite (Fe3O4) nanoparticles (NPs). In this work, Fe3O4 NPs were controllably synthesized on the areas where the photoconductive electrode was exposed to the periodically patterned interferometric laser irradiation during the electrodeposition. Thus, the micropattern of Fe3O4 NPs was controlled by interferometric laser pattern, and the crystallization of the particles was controlled by laser interference intensity and electrochemical deposition conditions. The bottom-up electrochemical approach was combined with a top-down laser interference methodology. This maskless method allows for in situ fabrication of periodically patterned magnetite NPs on the microscale by electrodeposition under room temperature and atmospheric pressure conditions. In the experiment, Fe3O4 NPs with the mean grain size below 100 nm in the pattern of 5-μm line array were achieved within the deposition time of 100 s. The experiment results have shown that the proposed method is a one-step approach in fabricating large areas of periodically micropatterned magnetite NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lisa J, Daniel K, Rahel K, Johannes R, Piriya T et al (2015) Recent developments of magnetoresistive sensors for industrial applications. Sensors 15:28665–28689

    Article  Google Scholar 

  2. Corteleón H, Nabaei V, Manzin A, Fletcher J, Krzysteczko P et al (2014) Anisotropic magnetoresistance state space of permalloy nanowires with domain wall pinning geometry. Sci Rep 4:6045. https://doi.org/10.1038/srep06045

    Article  Google Scholar 

  3. Cuong LV, Nghia NX, Thang PD (2015) Sorting and trapping human cells using a matrix of square micro-magnets. Mater Trans 56:1431–1433

    Article  Google Scholar 

  4. Lister SJ, Thomson T, Kohlbrecher J, Takano K, Venkataramana V et al (2010) Size-dependent reversal of grains in perpendicular magnetic recording media measured by small-angle polarized neutron scattering. Appl Phys Lett 97:112503. https://doi.org/10.1063/1.3486680

    Article  Google Scholar 

  5. Pauly M, Pichon BP, Panissod P, Fleutot S, Rodriguez P et al (2012) Size dependent dipolar interactions in iron oxide nanoparticle monolayer and multilayer Langmuir–Blodgett films. J Mater Chem 22:6343–6350

    Article  Google Scholar 

  6. Bedanta S, Kleemann W (2008) Supermagnetism. J Phys D Appl Phys 42:013001. https://doi.org/10.1088/0022-3727/42/1/013001

    Article  Google Scholar 

  7. Hellwig O, Berger A, Thomson T, Dobisz E, Bandic ZZ et al (2007) Separating dipolar broadening from the intrinsic switching field distribution in perpendicular patterned media. Appl Phys Lett 90:162516. https://doi.org/10.1063/1.2730744

    Article  Google Scholar 

  8. Yu LN, Lu LY, Xu ZD, Xu XG, Miao J et al (2012) Enhanced L 1 0 phase transition in CoPt/Ag core/shell nanoparticles. Mater Lett 86:142–145

    Article  Google Scholar 

  9. Mosendz O, Pisana S, Reiner JW, Stipe B, Weller D (2012) Ultra-high coercivity small-grain FePt media for thermally assisted recording (invited). J Appl Phys 111:07B729. https://doi.org/10.1063/1.3680543

    Article  Google Scholar 

  10. Brown S (2012) Developments in data storage: materials perspective. Platin Met Rev 56:262–266

    Article  Google Scholar 

  11. Martinez L, Leinen D, Martín F, Gabas M, Ramos-Barrado JR et al (2007) Electrochemical growth of diverse iron oxide (Fe3O4, α-FeOOH, and γ-FeOOH) thin films by electrodeposition potential tuning. J Electrochem Soc 154:D126–D133

    Article  Google Scholar 

  12. Meng Q, Wang Z, Chai X, Weng Z, Ding R et al (2016) Fabrication of hematite (α-Fe2O3) nanoparticles using electrochemical deposition. Appl Surf Sci 368:303–308

    Article  Google Scholar 

  13. Li D, Zhou X, Xu Z, Man J, Yuan B et al (2015) Electrodeposition of micro-nano size Fe3O4 crystals anchored on flexible buckypaper. J Solid State Electrochem 19:3053–3058

    Article  Google Scholar 

  14. Duan H, Chen X, Li B, Liang J (2010) Growth morphology study of cathodically electrodeposited Fe3O4 thin films at elevated temperatures. Mater Res Bull 45:1696–1702

    Article  Google Scholar 

  15. Jie Y, Niskala JR, Johnston-Peck AC, Krommenhoek PJ, Tracy JB et al (2012) Laterally patterned magnetic nanoparticles. J Mater Chem 22:1962–1968

    Article  Google Scholar 

  16. Palacin S, Hidber PC, Bourgoin J, Miramond C, Fermon C et al (1996) Patterning with magnetic materials at the micron scale. Chem Mater 8:1316–1325

    Article  Google Scholar 

  17. An L, Li W, Nie Y, Xie B, Li Z et al (2005) Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution. J Colloid Interface Sci 288:503–507

    Article  Google Scholar 

  18. Oktay Y, Tian G, Sachin K, Reinhoudt DN, Blank DH et al (2010) Monolayer-directed assembly and magnetic properties of FePt nanoparticles on patterned aluminum oxide. Int J Mol Sci 11:1162–1179

    Article  Google Scholar 

  19. Cavallini M, Bystrenova E, Timko M, Koneracka M, Zavisova V et al (2008) Multiple-length-scale patterning of magnetic nanoparticles by stamp assisted deposition. J Phys Condens Matter Inst Phys J 20:204144. https://doi.org/10.1088/0953-8984/20/20/204144

    Article  Google Scholar 

  20. Chen G, Bodnarchuk MI, Kovalenko MV, Springholz G, Heiss W et al (2010) Damascene process for controlled positioning of magnetic colloidal nanocrystals. Adv Mater 22:1364–1368

    Article  Google Scholar 

  21. Yang XM, Liu C, Ahner J, Yu J, Klemmer T et al (2004) Fabrication of FePt nanoparticles for self-organized magnetic array. J Vac Sci Technol B Microelectr Nanometer Struct 22:31–34

    Article  Google Scholar 

  22. Seo I, Kwon CW, Lee HH, Kim YS, Kim KB et al (2009) Completely filling anodic aluminum oxide with maghemite nanoparticles by dip coating and their magnetic properties. Electrochem Solid-State Lett 12:K59–K62

    Article  Google Scholar 

  23. Galloway JM, Bramble JP, Rawlings AE, Burnell G, Evans SD et al (2012) Biotemplated magnetic nanoparticle arrays. Small 8:204–208

    Article  Google Scholar 

  24. Galloway JM, Bramble JP, Rawlings AE, Burnell G, Evans SD et al (2012) Nanomagnetic arrays formed with the biomineralization protein Mms6. J Nano Res 17:127–146

    Article  Google Scholar 

  25. Bird SM, El-Zubir O, Rawlings AE, Leggett GJ, Staniland SS (2016) A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles. J Mater Chem C Mater Opt Electr Dev 4:3948–3955

    Article  Google Scholar 

  26. Bird SM, Rawlings AE, Galloway JM, Staniland SS (2016) Using a biomimetic membrane surface experiment to investigate the activity of the magnetite biomineralisation protein Mms6††Electronic supplementary information (ESI) available: Including Mms6 protein and peptide sequences, additional QCM-D and SEM dat. RSC Adv 6:7356–7363

    Article  Google Scholar 

  27. Liu N, Liang W, Mai JD, Liu L, Lee GB et al (2014) Rapid fabrication of nanomaterial electrodes using digitally controlled electrokinetics. IEEE Trans Nanotechnol 13:245–253

    Article  Google Scholar 

  28. Wei F, Lee GB, Yu H, Lai HSS, Liu L et al (2015) Optically-controlled digital electrodeposition of thin-film metals for fabrication of nano-devices. Opt Mater Express 5:838–848

    Article  Google Scholar 

  29. Li P, Liu N, Yu H, Wang F, Liu L et al (2016) Silver nanostructures synthesis via optically induced electrochemical deposition. Sci Rep 6:28035. https://doi.org/10.1038/srep28035

    Article  Google Scholar 

  30. Wang D, Wang Z, Zhang Z, Yue Y, Li D et al (2013) Effects of polarization on four-beam laser interference lithography. Appl Phys Lett 102:081903. https://doi.org/10.1063/1.4793752

    Article  Google Scholar 

  31. Zhao L, Wang Z, Zhang J, Cao L, Li L et al (2015) Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference. Appl Surf Sci 346:574–579

    Article  Google Scholar 

  32. Li L, Wang Z, Li W, Peng K, Zhang Z et al (2015) Fabrication of Pt nanowires with a diffraction-unlimited feature size by high-threshold lithography. Appl Phys Lett 107:133104. https://doi.org/10.1063/1.4932095

    Article  Google Scholar 

  33. Zhou Z, Song Z, Li L, Zhang J, Wang Z (2015) Fabrication of periodic variable-sized Pt nanoparticles via laser interference patterning. Appl Surf Sci 335:65–70

    Article  Google Scholar 

  34. Ghandoor HE, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745

    Google Scholar 

  35. Mills P, Sullivan JL (2000) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D Appl Phys 16:723–732

    Article  Google Scholar 

  36. Pamela C, Richard A, Denise R (2005) Lippincotts illustrated reviews biochemistry. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  37. Temesghen W, Sherwood P (2002) Analytical utility of valence band X-ray photoelectron spectroscopy of iron and its oxides, with spectral interpretation by cluster and band structure calculations. Anal Bioanal Chem 373:601–608

    Article  Google Scholar 

  38. Gamburg YD, Zangari G (2011) The structure of the metal-solution interface. Theory and practice of metal electrodeposition. Springer, Berlin, pp 27–51

    Book  Google Scholar 

  39. Morgan H, Green NG (2003) AC electrokinetics. Research Studies Press, Philadelphia

    Google Scholar 

  40. Fang Y, Liu Z (2010) Electrochemical reactions at the electrode/solution interface: theory and applications to water electrolysis and oxygen reduction. Sci China Chem 53:543–552

    Article  Google Scholar 

  41. Trasatti S (1983) Physical, chemical and structural aspects of the electrode/solution interface. Electrochim Acta 28:1083–1093

    Article  Google Scholar 

  42. Moddel G, Anderson DA, Paul W (1980) Derivation of the low-energy optical-absorption spectra of a-Si: H from photoconductivity. Phys Rev B 22:1918–1925

    Article  Google Scholar 

  43. Hashimoto T, Yamada T, Yoko T (1996) Third-order nonlinear optical properties of sol–gel derived α-Fe2O3, γ-Fe2O3, and Fe3O4 thin films. J Appl Phys 80:3184–3190

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “111” Project of China (D17017), National Key Basic Research Program of China (973 Program No. 2012CB326406), EU FP7 (BioRA No. 612641), China-EU H2020 (FabSurfWAR Nos. 2016YFE0112100 and 644971), EU H2020 (MNR4SCell No. 734174), National Natural Science Foundation Program of China (Nos. 61176002, 11103047 and 11504030), and Jilin Provincial Science and Technology Program (Nos. 20160520101JH, 20160101318JC and 20160623002TC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuobin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Dong, L., Li, L. et al. Fabrication of periodically micropatterned magnetite nanoparticles by laser-interference-controlled electrodeposition. J Mater Sci 53, 3239–3249 (2018). https://doi.org/10.1007/s10853-017-1788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1788-9

Keywords

Navigation