Skip to main content
Log in

Model-based control of a molten carbonate fuel cell (MCFC) process

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To improve availability and performance of fuel cells, the operating temperature of molten carbonate fuel cells (MCFC) stack should be strictly maintained within a specified operation range, and an efficient control technique should be employed to meet this objective. While most modern control strategies are based on process models, many existing models of MCFC are not ready to be applied in synthesis and operation of control systems. In this study, we developed an auto-regressive moving average (ARMA) model and machine learning methods of least squares support vector machine (LS-SVM), artificial neural network (ANN) and partial least squares (PLS) for the MCFC system based on input-output operating data. The ARMA model showed the best tracking performance. A model predictive control method for the operation of MCFC system was developed based on the proposed ARMA model. The control performance of the proposed MPC methods was compared with that of conventional controllers using numerical simulations performed on various process models including an MCFC process. Numerical results show that ARMA model based control provides improved control performance compared to other control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. He, J. Power Sources, 52, 179 (1994).

    Article  CAS  Google Scholar 

  2. W. He, J. Power Sources, 55, 25 (1995).

    Article  CAS  Google Scholar 

  3. J. B. Ernest, H. Ghezel-Ayagh and A. K. Kush, Proceedings of the 1996 fuel cell seminar, Orlando, FL, U.S.A., 75 (1996).

    Google Scholar 

  4. M. D. Lukas, K. Y. Lee and H. Ghezel-Ayagh, IEEE Trans. Energy Conver., 14(4), 1651 (1999).

    Article  Google Scholar 

  5. A. Comite, C. Costa, R. Di Felice, P. Paglia and D. Vitiello, Korean J. Chem. Eng., 32(2), 239 (2015).

    Article  CAS  Google Scholar 

  6. C. Gu, C. Zhang, X. Zhang, N. Ding, B. Li and Z. Yuan, Korean J. Chem. Eng., 34(1), 20 (2017)

    Article  CAS  Google Scholar 

  7. M. Sheng, M. Mangold and A. Kienle, J. Power Sources, 162, 1213 (2006).

    Article  CAS  Google Scholar 

  8. C. Shen, G.-Y. Cao and X.-J. Zhu, Simulation Modeling Practice and Theory, 10, 109 (2002).

    Article  Google Scholar 

  9. C. Shen, G.-Y. Cao, X.-J. Zhu and X.-J. Sun, J. Process Control, 12, 831 (2002).

    Article  CAS  Google Scholar 

  10. M. Farooque, H. C. Maru and B. Baker, Proceedings of the 28th Intersociety Energy Conversion Engineering Conference, Atlanta, GA, U.S.A., 181 (1993).

    Google Scholar 

  11. M.D. Lukas, K.Y. Lee and H. Ghezel-Ayagh, Control Engineering Practice, 197 (2002).

    Google Scholar 

  12. M.D. Lukas, K.Y. Lee and H. Ghezel-Ayagh, Proceedings of the 2000 IEEE power engineering society summer meeting, Seattle, WA, U.S.A., 1793 (2000).

    Google Scholar 

  13. M.D. Lukas and K.Y. Lee, Fuel Cells., 5(1), 115 (2004).

    Article  Google Scholar 

  14. AKM M. Murshed, Biao Huang and K. Nandakumar, J. Power Sources, 163, 830 (2007).

    Article  CAS  Google Scholar 

  15. J. H. Hirschenhofer, D.B. Stauffer, R.R. Engleman and M. G. Klett, Fuel Cell Handbook, U.S. Department of Energy (1998).

    Google Scholar 

  16. S. E. Said, D. David and A. Dickey, Biometrika, 71(3), 599 (1984).

    Article  Google Scholar 

  17. H. Monson, Statistical Digital Signal Processing and Modeling, Jone Wiley & Sons., New York, U.S.A., 541 (1996).

    Google Scholar 

  18. J.A.K. Suykens, Proceeding of IEEE Instrumentation and measurement technology, Budapest, Hungary, 287 (2001).

    Google Scholar 

  19. P. Samui, Scientific Research, 431 (2011).

    Google Scholar 

  20. H. Wang and D. Hu, IEEE, 279 (2005).

    Google Scholar 

  21. M.T. Hagan, H. B. Demuth and M. H. Beale, Boston, MA: PWS Publishing Company (1996).

    Google Scholar 

  22. Y.D. Tian, X. J. Zhu and G.Y. Cao, J. University of Science and Technology Beijing, 12, 72 (2005).

    CAS  Google Scholar 

  23. S. Thamizmani and S. Narasimman, Int. J. Emerging Res. in Management Technology, 3(4), 66 (2014).

    Google Scholar 

  24. J. K. Lee and S. W. Park, Korean J. Chem. Eng., 8(4), 195 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Koo Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.Y., Kim, B.S., Park, T.C. et al. Model-based control of a molten carbonate fuel cell (MCFC) process. Korean J. Chem. Eng. 35, 118–128 (2018). https://doi.org/10.1007/s11814-017-0274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0274-z

Keywords

Navigation