Skip to main content
Log in

Three-dimensional co-culture microfluidic model and its application for research on cancer stem-like cells inducing migration of endothelial cells

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To build a three-dimensional co-culture model in a microfluidic device for cancer research and evaluate its feasibility by investigating cancer stem-like cells (SCs) induced migration of human umbilical vein endothelial cells (ECs).

Results

The microfluidic device provided two-dimensional and three-dimensional (2D/3D) culture and co-culture environments without affecting cell viability. The device also provided an effective concentration for the chemiotaxis of cells, and to support real-time monitoring of cell behavior. In this model, SCs significantly increased the migration area of ECs with a hepatocarcinoma cell line (MHCC97H; MCs). The presence of ECs also induced both MCs and SCs invasion into Matrigel. The migration area of MCs and SCs significantly increased when co-cultured with ECs.

Conclusions

This 3D co-culture microfluidic model is a suitable model in cancer research. Compared with MCs, SCs had greater potential in inducing EC migration and interacting with ECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avǎdanei R, Cǎruntu ID, Amǎlinei C, Lozneanu L, Balan R, Grigoraş A, Ciobanu Apostol D, Eliza Giuşcǎ S (2013) High variability in MMP2/TIMP2 and MMP9/TIMP1 expression in secondary liver tumors. Rom J Morphol Embryol 54:479–485

    PubMed  Google Scholar 

  • Bokhari M, Ross JC, Neil RC, Stefan AP (2007) Novel cell culture device enabling three-dimensional cell growth and improved cell function. Biochem Biophys Res Commun 354:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Zhou YM, Zhai BB, Liao J et al (2011) Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol 11:1–11

    Article  Google Scholar 

  • Chung S, Sudo R, Mack PJ, Wan CR, Vickerman V, Kamm RD (2009) Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9:269–275

    Article  CAS  PubMed  Google Scholar 

  • Dai XZ, Cai SX, Ye QF, Jiang JH, Yan XQ, Xiong XL, Jiang QF, Wang ACL, Tan Y (2011) A novel in vitro angiogenesis model based on a microfluidic device. Chin Sci Bull 56:3301–3309

    Article  CAS  Google Scholar 

  • De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: Filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649

    Article  PubMed  Google Scholar 

  • Geudens I, Holger G (2011) Coordinating cell behaviour during blood vessel formation. Development 138:4569–4583

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Franco C, Bentley K, Collins RT et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  CAS  PubMed  Google Scholar 

  • Jeong GS, Han S, Shin Y, Kwon GH, Kamm RD, Lee SH, Chung S (2011) Sprouting angiogenesis under a chemical gradient regulated by interactions with an endothelial monolayer in a microfluidic platform. Anal Chem 83:8454–8459

    Article  CAS  PubMed  Google Scholar 

  • Kunz-Schughart L, Freyer J, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:273–285

    Article  CAS  PubMed  Google Scholar 

  • Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794

    Article  CAS  PubMed  Google Scholar 

  • Lozito TP, Tuan RS (2014) Endothelial and cancer cells interact with mesenchymal stem cells via both microparticles and secreted factors. J Cell Mol Med 18:2372–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T, Bohman S, Dixelius J, Berge T et al (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24:2342–2353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandagopal S, Wu D, Lin F (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE 6:e18183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553

    Article  CAS  PubMed  Google Scholar 

  • Oishi N, Wang XW (2011) Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci 7:517–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasirayi G, Scott SM, Islam M, O’Hare L, Bateson S, Ali Z (2014) Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay. Talanta 129:491–498

    Article  CAS  PubMed  Google Scholar 

  • Saadi W, Wang SJ, Lin F, Jeon NL (2006) A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 8:109–118

    Article  PubMed  Google Scholar 

  • Shamloo A, Heilshorn SC (2010) Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10:3061–3068

    Article  CAS  PubMed  Google Scholar 

  • Vickerman V, Chung S, Kamm RD (2008) Design, fabrication and implementation of a novel multi parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RX, Xu JC, Juliette L, Castilleja A, Love J, Sung SY, Zhau HE, Goodwin TJ, Chung LWK (2005) Three-dimensional co-culture models to study prostate cancer growth, progression, and metastasis to bone. Semin Cancer Biol 15:353–364

    Article  CAS  PubMed  Google Scholar 

  • Weber CE, Kuo PC (2012) The tumor microenvironment. Surg Oncol 21:172–177

    Article  PubMed  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890

    Article  CAS  PubMed  Google Scholar 

  • Wlodkowic D, Cooper JM (2010) Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol 14:556–567

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Wang XW (2013) Review series Cancer stem cells in the development of liver cancer. J Clin Invest 123:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), the Ministry of Education (No. CQKLBST-2015-007), the National Natural Science Foundation of China (NNSFC 11172339) and the Open Fund of Chongqing University of Large Instruments and Equipment.

Supporting information

Supplementary material A—methods of experiments without the microfluidic device.

Supplementary material B—demonstration of the factors across the gel channel.

Supplementary Fig. 1the viability and morphology of MCs and SCs suspended in 3D Matrigel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxi Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yan, X., Li, B. et al. Three-dimensional co-culture microfluidic model and its application for research on cancer stem-like cells inducing migration of endothelial cells. Biotechnol Lett 39, 1425–1432 (2017). https://doi.org/10.1007/s10529-017-2363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2363-9

Keywords

Navigation