Skip to main content
Log in

Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Intracellular trehalose accumulation is relevant to fungal life and pathogenicity. Trehalose-6-phosphate synthase (TPS) is known to control the first step of trehalose synthesis, but functions of multiple TPS genes in some filamentous fungi are variable. Here, we examined the functions of two TPS genes (tpsA and tpsB) in Beauveria bassiana, a fungal insect pathogen widely applied in arthropod pest control. Intracellular TPS activity and trehalose content decreased by 71–75 and 72–80% in ΔtpsA, and 21–30 and 15–45% in ΔtpsB, respectively, and to undetectable levels in ΔtpsAΔtpsB, under normal and stressful conditions. The three mutants lost 33, 50, and 98% of conidiation capacity in standard cultures. Conidial quality indicated by viability, density, intracellular trehalose content, cell wall integrity, and hydrophobicity was more impaired in ΔtpsA than in ΔtpsB and mostly in ΔtpsAΔtpsB, which was also most sensitive to nutritional, chemical, and environmental stresses and least virulent to Galleria mellonella larvae. Almost all of phenotypic defects in ΔtpsAΔtpsB approached to the sums of those observed in ΔtpsA and ΔtpsB and were restored by targeted gene complementation. Altogether, TpsA and TpsB play complementary roles in sustaining trehalose synthesis, conidiation capacity, conidial quality, multiple stress tolerance, and virulence, highlighting a significance of both for the fungal adaptation to environment and host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Bader N, Vanier G, Liu H, Gravelat FN, Urb M, Hoareau CMQ, Campoli P, Chabot J, Filler SG, Sheppard DC (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78:3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell W, Sun WN, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  CAS  PubMed  Google Scholar 

  • Boudreau BA, Larson TM, Brown DW, Busman M, Roberts ES, Kendra DF, McQuade KL (2013) Impact of temperature stress and validamycin a on compatible solutes and fumonisin production in F. verticillioides role of trehalose-6-phosphate synthase. Fungal Genet Biol 57:1–10

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • De Virgilio C, Bürckert N, Bell W, Jenö P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase-activity. Eur J Biochem 212:315–323

    Article  CAS  PubMed  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiol-SGM 152:2625–2634

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  PubMed  Google Scholar 

  • Fang WX, Yu XY, Wang B, Zhou H, Ouyang HM, Ming J, Jin C (2009) Characterization of the Aspergillus fumigatus phosphomannose isomerase Pmi1 and its impact on cell wall synthesis and morphogenesis. Microbiol-SGM 155:3281–3293

    Article  CAS  Google Scholar 

  • Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA (2012) Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a mate-family pump regulate glucose metabolism during infection. PLoS Genet 8:e1002673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d'Enfert C (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiol-SGM 147:1851–1862

    Article  CAS  Google Scholar 

  • Flores CL, Gancedo C, Petit T (2011) Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 6:e23695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster AJ, Jenkinson JM, Talbot NJ (2003) Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J 22:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  CAS  PubMed  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JI, Yu YM, Rho YM, Park BC, Choi JH, Park HM, Maeng PJ (2005) Differential expression of the chsE gene encoding a chitin synthase of Aspergillus nidulans in response to developmental status and growth conditions. FEMS Microbiol Lett 249:121–129

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Ying SH, Feng MG, Jiang XH (2009) Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie Van Leeuwenhoek 95:65–75

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowe RGT, Lord M, Rybak K, Trengove RD, Oliver RP, Solomon PS (2009) Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genet Biol 46:381–389

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T, Argüelles JC (2007) Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 13:384–394

    Article  PubMed  Google Scholar 

  • Ngamskulrungroj P, Himmelreich U, Breger JA, Wilson C, Chayakulkeeree M, Krockenberger MB, Malik R, Daniel HM, Toffaletti D, Djordjevic JT, Mylonakis E, Meyer W, Perfect JR (2009) The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infect Immun 77:4584–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noubhani A, Bunoust O, Rigoulet M, Thevelein JM (2000) Reconstitution of ethanolic fermentation in permeabilized spheroplasts of wild-type and trehalose-6-phosphate synthase mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 267:4566–4576

    Article  CAS  PubMed  Google Scholar 

  • Nwaka S, Mechler B, Destruelle M, Holzer H (1995) Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett 360:286–290

    Article  CAS  PubMed  Google Scholar 

  • Ocón A, Hampp R, Requena N (2007) Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol 174:879–891

    Article  PubMed  Google Scholar 

  • Ram AF, Klis FM (2006) Identification of fungal cell wall mutants using susceptibility assays based on calcofluor white and Congo red. Nat Protoc 1:2253–2256

    Article  CAS  PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2006) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134

    Article  CAS  PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    Article  PubMed  Google Scholar 

  • Rangel DEN, Braga GUL, Fernandes ÉKK, Keyser CA, Hallsworth JE, Roberts DW (2015) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 61:383–404

    Article  CAS  PubMed  Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913

    Article  CAS  PubMed  Google Scholar 

  • Reinders A, Burckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, DeVirgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol 24:687–695

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MJS, Reinders A, Boller T, Wiemken A, DeVirgilio C (1997) Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol 25:571–581

    Article  CAS  PubMed  Google Scholar 

  • Serneels J, Tournu H, Van Dijck P (2012) Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans. J Biol Chem 287:36873–36882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  PubMed  Google Scholar 

  • Song XS, Li HP, Zhang JB, Song B, Huang T, Du XM, Gong AD, Liu YK, Feng YN, Agboola RS, Liao YC (2014) Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Fungal Genet Biol 63:24–41

    Article  CAS  PubMed  Google Scholar 

  • Svanström A, Van Leeuwen MR, Dijksterhuis J, Melin P (2014) Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiol 14:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tournu H, Fiori A, Van Dijck P (2013) Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog 9:e1003447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevisol ETV, Panek AD, De Mesquita JF, Eleutherio ECA (2014) Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. BBA-Gen Subj 1840:1646–1650

    Article  CAS  Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of 2 related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Lu JD, Feng MG (2012) Primary roles of two dehydrogenases in the mannitol metabolism and multi-stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 14:2139–2150

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Qiu L, Cai Q, Ying SH, Feng MG (2014) Three α-1, 2-mannosyltransferases contribute differentially to conidiation, cell wall integrity, multistress tolerance and virulence of Beauveria bassiana. Fungal Genet Biol 70:1–10

    Article  PubMed  Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci U S A 107:21902–21907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler K, Kienle I, Burgert M, Wagner JC, Holzer H (1991) Metabolic-regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269–272

    Article  CAS  PubMed  Google Scholar 

  • Wolschek MF, Kubicek CP (1997) The filamentous fungus Aspergillus niger contains two “differentially regulated” trehalose-6-phosphate synthase-encoding genes, tpsA and tpsB. J Biol Chem 272:2729–2735

    Article  CAS  PubMed  Google Scholar 

  • Xiao GH, Ying SH, Zheng P, Wang ZL, Zhang SW, Xie XQ, Shang YF, St Leger RJ, Zhao GP, Wang CS, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    PubMed  PubMed Central  Google Scholar 

  • Xie XQ, Li F, Ying SH, Feng MG (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS One 7:e30298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza O, González-Párraga P, Pedreño Y, Alvarez-Peral FJ, Argüelles JC (2003) Trehalose accumulation induced during the oxidative stress response is independent of TPS1 mRNA levels in Candida albicans. Int Microbiol 6:121–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jun-Ying Li (Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University) for technical assistance with TEM. This work was financially supported by the National Natural Science Foundation of China (Grant nos. 31572054 and 31270537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Juan-Juan Wang and Qing Cai contribute equally to this study.

Electronic supplementary material

ESM 1

(PDF 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JJ., Cai, Q., Qiu, L. et al. Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 101, 3637–3651 (2017). https://doi.org/10.1007/s00253-017-8155-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8155-2

Keywords

Navigation