Skip to main content
Log in

Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both l- and d- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayer SW, Mcinnes AG, Thibault P, Walter JA, Doull JL, Parnell T, Vining LC (1991) Jadomycin, a novel 8H-Benz[b]oxazolo[3,2-f]phenanthridine antibiotic from Streptomyces venezuelae ISP5230. Tetrahedron Lett 32:6301–6304. doi:10.1016/0040-4039(91)80152-V

    Article  CAS  Google Scholar 

  • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49. doi:10.1016/0378-1119(92)90627-2

    Article  CAS  PubMed  Google Scholar 

  • Borissow CN, Graham CL, Syvitski RT, Reid TR, Blay J, Jakeman DL (2007) Stereochemical integrity of oxazolone ring-containing jadomycins. Chembiochem 8:1198–1203. doi:10.1002/cbic.200700204

    Article  CAS  PubMed  Google Scholar 

  • Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN (2011) Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci U S A 108:17649–17654. doi:10.1073/pnas.1108484108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Fan K, He Y, Xu X, Peng Y, Yu T, Jia C, Yang K (2010) Characterization of JadH as an FAD- and NAD(P)H-dependent bifunctional hydroxylase/dehydrase in jadomycin biosynthesis. Chembiochem 11:1055–1060. doi:10.1002/cbic.201000178

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Wang CC, Greenwell L, Rix U, Hoffmeister D, Vining LC, Rohr J, Yang KQ (2005) Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J Biol Chem 280:22508–22514. doi:10.1074/jbc.M414229200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G (2012) Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS J 279:3251–3263. doi:10.1111/j.1742-4658.2012.08711.x

    Article  CAS  PubMed  Google Scholar 

  • Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA (2010) Diverse DNA-cleaving capacities of the jadomycins through precursor-directed biosynthesis. Org Lett 12:1172–1175. doi:10.1021/Ol902907r

    Article  CAS  PubMed  Google Scholar 

  • Doull JL, Ayer SW, Singh AK, Thibault P (1993) Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:869–871. doi:10.7164/antibiotics.46.869

    Article  CAS  PubMed  Google Scholar 

  • Doull JL, Singh AK, Hoare M, Ayer SW (1994) Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125

    Article  CAS  PubMed  Google Scholar 

  • Dupuis SN, Veinot T, Monro SM, Douglas SE, Syvitski RT, Goralski KB, McFarland SA, Jakeman DL (2011) Jadomycins derived from the assimilation and incorporation of norvaline and norleucine. J Nat Prod 74:2420–2424. doi:10.1021/np200689w

    Article  CAS  PubMed  Google Scholar 

  • Fan K, Pan G, Peng X, Zheng J, Gao W, Wang J, Wang W, Li Y, Yang K (2012a) Identification of JadG as the B ring opening oxygenase catalyzing the oxidative C-C bond cleavage reaction in jadomycin biosynthesis. Chem Biol 19:1381–1390. doi:10.1016/j.chembiol.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  • Fan K, Zhang X, Liu H, Han H, Luo Y, Wang Q, Geng M, Yang K (2012b) Evaluation of the cytotoxic activity of new jadomycin derivatives reveals the potential to improve its selectivity against tumor cells. J Antibiot 65:449–452. doi:10.1038/ja.2012.48

    Article  CAS  PubMed  Google Scholar 

  • Fischer C, Lipata F, Rohr J (2003) The complete gene cluster of the antitumor agent gilvocarcin V and its implication for the biosynthesis of the gilvocarcins. J Am Chem Soc 125:7818–7819. doi:10.1021/ja034781q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu DH, Jiang W, Zheng JT, Zhao GY, Li Y, Yi H, Li ZR, Jiang JD, Yang KQ, Wang Y, Si SY (2008) Jadomycin B, an aurora-B kinase inhibitor discovered through virtual screening. Mol Cancer Ther 7:2386–2393. doi:10.1158/1535-7163.Mct-08-0035

    Article  CAS  PubMed  Google Scholar 

  • Gantt RW, Peltier-Pain P, Thorson JS (2011) Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 28:1811–1853. doi:10.1039/c1np00045d

    Article  CAS  PubMed  Google Scholar 

  • Henkel T, Rohr J, Beale JM, Schwenen L (1990) Landomycins, new angucycline antibiotics from Streptomyces sp. I Structural studies on landomycins A-D. J Antibiot 43:492–503. doi:10.7164/antibiotics.43.492

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister D, Ichinose K, Domann S, Faust B, Trefzer A, Drager G, Kirschning A, Fischer C, Kunzel E, Bearden DW, Rohr J, Bechthold A (2000) The NDP-sugar co-substrate concentration and the enzyme expression level influence the substrate specificity of glycosyltransferases: cloning and characterization of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster. Chem Biol 7:821–831. doi:10.1016/S1074-5521(00)00029-6

    Article  CAS  PubMed  Google Scholar 

  • Issa ME, Hall SR, Dupuis SN, Graham CL, Jakeman DL, Goralski KB (2014) Jadomycins are cytotoxic to ABCB1-, ABCC1-, and ABCG2-overexpressing MCF7 breast cancer cells. Anti-Cancer Drugs 25:255–269. doi:10.1097/CAD.0000000000000043

    Article  CAS  PubMed  Google Scholar 

  • Jakeman DL, Bandi S, Graham CL, Reid TR, Wentzell JR, Douglas SE (2009) Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob Agents Chemother 53:1245–1247. doi:10.1128/AAC.00801-08

    Article  CAS  PubMed  Google Scholar 

  • Jakeman DL, Borissow CN, Graham CL, Timmons SC, Reid TR, Syvitski RT (2006a) Substrate flexibility of a 2,6-dideoxyglycosyltransferase. Chem Commun:3738–3740. doi:10.1039/b608847c

  • Jakeman DL, Farrell S, Young W, Doucet RJ, Timmons SC (2005a) Novel jadomycins: incorporation of non-natural and natural amino acids. Bioorg Med Chem Lett 15:1447–1449. doi:10.1016/j.bmcl.2004.12.082

    Article  CAS  PubMed  Google Scholar 

  • Jakeman DL, Graham CL, Reid TR (2005b) Novel and expanded jadomycins incorporating non-proteogenic amino acids. Bioorg Med Chem Lett 15:5280–5283. doi:10.1016/j.bmcl.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  • Jakeman DL, Graham CL, Young W, Vining LC (2006b) Culture conditions improving the production of jadomycin B. J Ind Microbiol Biotechnol 33:767–772. doi:10.1007/s10295-006-0113-4

    Article  CAS  PubMed  Google Scholar 

  • Janso JE, Haltli BA, Eustaquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP (2014) Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 70:4156–4164. doi:10.1016/j.tet.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharel MK, Nybo SE, Shepherd MD, Rohr J (2010) Cloning and characterization of the ravidomycin and chrysomycin biosynthetic gene clusters. Chembiochem 11:523–532. doi:10.1002/cbic.200900673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Farina CF, Jakeman DL (2015) Jadomycins, put a bigger ring in it: isolation of seven- to ten-membered ring analogues. Chem Commun 51:14617–14619. doi:10.1039/c5cc05571g

    Article  CAS  Google Scholar 

  • Martinez-Farina CF, Robertson AW, Yin H, Monro S, McFarland SA, Syvitski RT, Jakeman DL (2015) Isolation and synthetic diversification of jadomycin 4-amino-l-phenylalanine. J Nat Prod 78:1208–1214. doi:10.1021/np5009398

    Article  CAS  PubMed  Google Scholar 

  • Moncrieffe MC, Fernandez MJ, Spiteller D, Matsumura H, Gay NJ, Luisi BF, Leadlay PF (2012) Structure of the glycosyltransferase EryCIII in complex with its activating P450 homologue EryCII. J Mol Biol 415:92–101. doi:10.1016/j.jmb.2011.10.036

    Article  CAS  PubMed  Google Scholar 

  • Monro SM, Cottreau KM, Spencer C, Wentzell JR, Graham CL, Borissow CN, Jakeman DL, McFarland SA (2011) Copper-mediated nuclease activity of jadomycin B. Bioorg Med Chem 19:3357–3360. doi:10.1016/j.bmc.2011.04.043

    Article  CAS  PubMed  Google Scholar 

  • Perez M, Lombo F, Zhu L, Gibson M, Brana AF, Rohr J, Salas JA Mendez C (2005) combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Chem Commun:1604–1606. doi:10.1039/b417815g

  • Rix U, Zheng J, Remsing Rix LL, Greenwell L, Yang K, Rohr J (2004) The dynamic structure of jadomycin B and the amino acid incorporation step of its biosynthesis. J Am Chem Soc 126:4496–4497. doi:10.1021/ja031724o

    Article  CAS  PubMed  Google Scholar 

  • Robertson AW, Martinez-Farina CF, Smithen DA, Yin H, Monro S, Thompson A, McFarland SA, Syvitski RT, Jakeman DL (2015a) Eight-membered ring-containing jadomycins: implications for non-enzymatic natural products biosynthesis. J Am Chem Soc 137:3271–3275. doi:10.1021/ja5114672

    Article  CAS  PubMed  Google Scholar 

  • Robertson AW, Martinez-Farina CF, Syvitski RT, Jakeman DL (2015b) Characterization of l-digitoxosyl-phenanthroviridin from Streptomyces venezuelae ISP5230. J Nat Prod 78:1942–1948. doi:10.1021/acs.jnatprod.5b00277

    Article  CAS  PubMed  Google Scholar 

  • Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232. doi:10.1016/j.tim.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Sharif EU, O’Doherty GA (2012) Biosynthesis and total synthesis studies on the jadomycin family of natural products. European J Org Chem. doi:10.1002/ejoc.201101609

    PubMed  PubMed Central  Google Scholar 

  • Shepherd MD, Liu T, Mendez C, Salas JA, Rohr J (2011) Engineered biosynthesis of gilvocarcin analogues with altered deoxyhexopyranose moieties. Appl Environ Microbiol 77:435–441. doi:10.1128/AEM.01774-10

    Article  CAS  PubMed  Google Scholar 

  • Tam HK, Harle J, Gerhardt S, Rohr J, Wang GJ, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O (2015) Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Angew Chem Int Edit 54:2811–2815. doi:10.1002/anie.201409792

    Article  CAS  Google Scholar 

  • Thibodeaux CJ, Melançon CE, H-w L (2008) Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Edit 47:9814–9859. doi:10.1002/anie.200801204

    Article  CAS  Google Scholar 

  • Walsh C, Freel Meyers CL, Losey HC (2003) Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 46:3425–3436. doi:10.1021/jm030257i

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tian X, Wang J, Yang H, Fan K, Xu G, Yang K, Tan H (2009) Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106:8617–8622. doi:10.1073/pnas.0900592106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, White RL, Vining LC (2002) Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. Microbiology 148:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li X, Wang J, Xiang S, Feng X, Yang K (2013) An engineered strong promoter for streptomycetes. Appl Environ Microbiol 79:4484–4492. doi:10.1128/AEM.00985-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WS, Ji JJ, Li X, Wang J, Li SS, Pan GH, Fan KQ, Yang KQ (2014) Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci USA 111:5688–5693. doi:10.1073/pnas.1324253111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Wang J, Wang L, Tian X, Yang H, Fan K, Yang K, Tan H (2010) “Pseudo” gamma-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285:27440–27448. doi:10.1074/jbc.M110.143081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pan G, Zou Z, Fan K, Yang K, Tan H (2013) JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90:884–897. doi:10.1111/mmi.12406

    Article  CAS  PubMed  Google Scholar 

  • Zheng JT, Rix U, Zhao L, Mattingly C, Adams V, Chen Q, Rohr J, Yang KQ (2005) Cytotoxic activities of new jadomycin derivatives. J Antibiot 58:405–408. doi:10.1038/ja.2005.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant: 31130001). We thank Ajeeth Adhikari at The Scripps Research Institute for critical reading of this manuscript, and Dr. Chin-Yuan Chang at The Scripps Research Institute for helping analyze the structure model of JadS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1977 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Pan, G., Zhu, X. et al. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase. Appl Microbiol Biotechnol 101, 5291–5300 (2017). https://doi.org/10.1007/s00253-017-8256-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8256-y

Keywords

Navigation