Skip to main content
Log in

Study of Catalyst Deactivation in Liquid-Phase Hydrogenation of 3-Nitrostyrene Over Au/Al2O3 Catalyst in Flow Reactor

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

For the first time, we report the results of the study of dynamics of the Au/Al2O3 catalyst deactivation during the selective liquid-phase 3-nitrostyrene (3-NS) hydrogenation in a fixed bed flow reactor. It is shown that the formation of carbonaceous deposits is the main reason of catalyst deactivation, while the leaching of gold from the Au/Al2O3 catalyst or enlargement of the gold particles has not been detected. The content of the carbon deposits on the spent catalyst at the inlet of the reactor is higher than at the outlet and increases as the initial concentration of 3-NS grows. The character of carbonaceous deposits allocation and analysis of reaction products point out to 3-vinylnitrosobenzene as the main source of the Au/Al2O3 catalyst deactivation coinciding with the speculation arising from the kinetic modeling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Downing RS, Kunkeler PJ, van Bekkum H (1997) Catal Today 37:121–136

    Article  CAS  Google Scholar 

  2. Blaser H-U (2006) Science 313:312–313

    Article  CAS  Google Scholar 

  3. Blaser H-U, Steiner H, Studer M (2009) ChemCatChem 1:210–221

    Article  CAS  Google Scholar 

  4. Ananikov VP, Khemchyan LL, Ivanova YuV, Bukhtiyarov VI, Sorokin AM, Prosvirin IP, Vatsadze SZ, Medvedko AV, Nuriev VN, Dilman AD, Levin VV, Koptyug IV, Kovtunov KV, Zhivonitko VV, Likholobov VA, Romanenko AV, Simonov PA, Nenajdenko VG, Shmatova OI, Muzalevskiy VM, Nechaev MS, Asachenko AF, Morozov OS, Dzhevakov PB, Osipov SN, Vorobyeva DV, Topchiy MA, Zotova MA, Ponomarenko SA, Borshchev OV, Luponosov YuN, Rempel AA, Valeeva AA, Stakheev AYu, Turova OV, Mashkovsky IS, Sysolyatin SV, Malykhin VV, Bukhtiyarova GA, Terentev AO, Krylov IB (2014) Russ Chem Rev 83:885–985

    Article  Google Scholar 

  5. Cardenas-Lizana F, Keane MA (2013) J Mater Sci 48:543–564

    Article  CAS  Google Scholar 

  6. Serna P, Boronat M, Corma A (2011) Top Catal 54:439–446

    Article  CAS  Google Scholar 

  7. Corma A, Serna P, Concepcion P, Calvino JJ (2008) J Am Chem Soc 130:8748–8753

    Article  CAS  Google Scholar 

  8. Motoyama Y, Lee Y, Tsuji K, Yoon S-H, Mochida I, Nagashima H (2011) ChemCatChem 3:1578–1581

    Article  CAS  Google Scholar 

  9. Corma A, Serna P (2006) Science 313:332–334

    Article  CAS  Google Scholar 

  10. Boronat M, Concepcion P, Corma A, Gonzalez S, Illas F, Serna P (2007) J Am Chem Soc 129:16230–16237

    Article  CAS  Google Scholar 

  11. Shimizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) J Phys Chem C 113:17803–17810

    Article  CAS  Google Scholar 

  12. Nuzhdin AL, Moroz BL, Bukhtiyarova GA, Reshetnikov SI, Pyrjaev PA, Aleksandrov PV, Bukhtiyarov VI (2015) ChemPlusChem 80:1741–1749

    Article  CAS  Google Scholar 

  13. Matsushima Y, Nishiyabu R, Takanashi N, Haruta M, Kimura H, Kubo Y (2012) J Mater Chem 22:24124–24131

    Article  CAS  Google Scholar 

  14. Shimizu K-I, Miyamoto Y, Satsuma A (2010) J Catal 270:86–94

    Article  CAS  Google Scholar 

  15. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Angew Chem Int Ed 51:136–139

    Article  CAS  Google Scholar 

  16. Reis PM, Royo B (2009) Tetrahedron Lett 50:949–952

    Article  CAS  Google Scholar 

  17. Serna P, Concepcion P, Corma A (2009) J Catal 265:19–25

    Article  CAS  Google Scholar 

  18. Yarulin A, Berguerand C, Yuranov I, Cardenas-Lizana F, Prokopyeva I, Kiwi-Minsker L (2015) J Catal 321:7–12

    Article  CAS  Google Scholar 

  19. Cardenas-Lizana F, Lamey D, Li M, Keane MA, Kiwi-Minsker L (2014) Chem Eng J 255:695–704

    Article  CAS  Google Scholar 

  20. He D, Shi H, Wu Y, Xu B-Q (2007) Green Chem 9:849–851

    Article  CAS  Google Scholar 

  21. Hartfelder U, Kartusch C, Makosch M, Rovezzi M, Sa J, van Bokhoven JA (2013) Catal Sci Technol 3:454–461

    Article  CAS  Google Scholar 

  22. Wang X, Perret N, Delgado JJ, Blanco G, Chen X, Olmos CM, Bernal S, Keane MA (2013) J Phys Chem C 117:994–1005

    Article  CAS  Google Scholar 

  23. Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA (2012) J Catal 286:172–183

    Article  CAS  Google Scholar 

  24. Wang XD, Perret N, Keane MA (2012) Chem Eng J 210:103–113

    Article  CAS  Google Scholar 

  25. Irfan M, Glasnov TN, Kappe CO (2011) ChemSusChem 4:300–316

    Article  CAS  Google Scholar 

  26. Hessel V (2009) Chem Eng Technol 32:1655–1681

    Article  CAS  Google Scholar 

  27. Baxendale IR, Brocken L, Mallia CJ (2013) Green Process Synth 2:211–230

    CAS  Google Scholar 

  28. Wiles C, Watts P (2014) Green Chem 16:55–62

    Article  CAS  Google Scholar 

  29. Moroz BL, Pyrjaev PA, Zaikovskii VI, Bukhtiyarov VI (2009) Catal Today 144:292–305

    Article  CAS  Google Scholar 

  30. Jones RV, Godorhazy L, Varga N, Szalay D, Urge L, Darvas F (2006) J Comb Chem 8:110–116

    Article  CAS  Google Scholar 

  31. Froment GF, Bischoff KB (1961) Chem Eng Sci 16:189–201

    Article  CAS  Google Scholar 

  32. Solkina YuS, Reshetnikov SI, Estrada M, Simakov AV, Murzin DY, Simakova IL (2011) Chem Eng J 176–177:42–48

    Google Scholar 

  33. Satterfield CN (1984) Heterogeneous catalysis in practice. McGraw-Hill Book Company, New York

    Google Scholar 

  34. Froment GF, Bischoff KB (1979) Chemical reactor analysis and design. Wiley, New York

    Google Scholar 

  35. Nuzhdin AL, Artiukha EA, Bukhtiyarova GA, Zaytsev SYu, Plyusnin PE, Shubin YuV, Bukhtiyarov VI (2016) RSC Adv 6:88366–88372

    Article  CAS  Google Scholar 

  36. Meijers S, Ponec V (1996) J Catal 160:1–9

    Article  CAS  Google Scholar 

  37. Richner G, van Bokhoven JA, Neuhold Y-M, Makosch M, Hungerbuchler K (2011) Phys Chem Chem Phys 13:12463–12471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Russian Science Foundation (Grant 14-23-00146) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Nuzhdin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuzhdin, A.L., Reshetnikov, S.I., Bukhtiyarova, G.A. et al. Study of Catalyst Deactivation in Liquid-Phase Hydrogenation of 3-Nitrostyrene Over Au/Al2O3 Catalyst in Flow Reactor. Catal Lett 147, 572–580 (2017). https://doi.org/10.1007/s10562-016-1959-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1959-3

Keywords

Navigation