Skip to main content

Advertisement

Log in

Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polyphenols of plant origin with wide range of antiradical activity can prevent diseases caused by oxidative and inflammatory processes. In this study, we show using ESR method that the purified water-soluble extract from leaves of Rhus typhina L. containing hydrolysable tannins and its main component, 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-d-glucose (C55H40O34), displayed a strong antiradical activity against the synthetic 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in homogenous (solution) and heterogeneous systems (suspension of DPPH containing liposomes) in the range of 1–10 μg/ml. The C55H40O34 and extract at 1–30 μg/ml also efficiently, but to a various degree, decreased reactive oxygen and nitrogen species (RONS) formation induced in erythrocytes by oxidants, following the sequence: tert-butyl hydroperoxide (tBuOOH) > peroxynitrite (ONOO) >hypochlorous acid (HClO). The explanation of these differences should be seen in the specificity of scavenging different RONS types. These relationships can be represented for C55H40O34 and the extract by the following order of selectivity: O.− 2 ≥ NO· > ·OH > 1O2. The extract exerted a more pronounced antiradical effect in reaction with DPPH and ROS in all models of oxidative stress in erythrocytes in comparison with C55H40O34. The redox processes between the extract components and their specificity in relation to RONS can underlie this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMPO:

5,5-Dimethyl-1-pyrroline-N-oxide

DCFH-DA:

2′-7′-dichlorodihydrofluorescein diacetate

DPPH:

1,1-Diphenyl-2-picrylhydrazyl radical

EDTA:

Ethylenediaminetetraacetic acid

ESR:

Electron spin resonance

HClO:

Hypochlorous acid

NBT:

Nitroblue tetrazolium

NO:

Nitric oxide

1O2 :

Singlet oxygen

O.− 2 :

Superoxide radical anion

OH:

Hydroxyl radical

ONOO :

Peroxynitrite

PMS:

Phenazine methosulfate

RNO:

N,N-Dimethyl-4-nitroaniline

RONS:

Reactive oxygen and nitrogen species

tBuOOH:

tert-butyl hydroperoxide.

References

  1. Rayne, S., & Mazza, G. (2007). Biological activities of extracts from sumac (Rhus spp.): a review. Plant Foods for Human Nutrition, 62, 165–175.

    Article  Google Scholar 

  2. El Hasasna, H., Saleh, A., Samri, H. A., Athamneh, K., Attoub, S., Arafat, K., Benhalilou, N., Alyan, S., Viallet, J., Dhaheri, Y. A., Eid, A., & Iratni, R. (2016). Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways. Scientific Reports, 6, 21144. doi:10.1038/srep21144.

  3. Salimi, Z., Eskandary, A., Headari, R., Nejati, V., Moradi, M., & Kalhori, Z. (2015). Antioxidant effect of aqueous extract of sumac (Rhus coriaria L.) in the alloxan-induced diabetic rats. Indian Journal of Physiology and Pharmacology, 59, 87–93.

    Google Scholar 

  4. Salikhov, Sh., ,Mavlyanov, S., Karamov, E., Abdullajanova, N. (2012). The remedy possessing anti-influenza activity. Bull. N 7, UZ IAP 04524.

  5. Mavlyanov, S. M., Islambekov, S. Y., Ismailov, A. I., Dalimov, D. N., & Abdulladzhanova, N. G. (2001). Vegetable tanning agents. Chemistry of Natural Compounds, 37, 1–24.

    Article  CAS  Google Scholar 

  6. Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L., & Opletal, L. (2008). Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Reviews in Medicinal Chemistry, 8, 436–447.

    Article  CAS  Google Scholar 

  7. Serrano, J., Puupponen–Pimia, R., Dauer, A., Aura, A. M., & Saura–Calixto, F. (2009). Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition & Food Research, 53, 310–329.

    Article  Google Scholar 

  8. Heber, D. (2008). Multitargeted therapy of cancer by ellagitannins. Cancer Letters, 269, 262–268.

    Article  CAS  Google Scholar 

  9. Cryan, L. M., Bazinet, L., Habeshian, K. A., Cao, S., Clardy, J., Christensen, K. A., & Rogers, M. S. (2013). 1,2,3,4,6-Penta-O-galloyl-β-D-glucopyranose inhibits angiogenesis via inhibition of capillary morphogenesis gene2. Journal of Medicinal Chemistry, 56, 1940–1945.

    Article  CAS  Google Scholar 

  10. Fraga, C. G., & Oteiza, P. I. (2011). Dietary flavonoids: role of (−)-epicatechin and related procyanidins in cell signaling. Free Radical Biology & Medicine, 51, 813–823.

    Article  CAS  Google Scholar 

  11. Larrosa, M., Garcia-Conesa, M. T., Espin, J. C., & Tomas-Barberan, A. T. (2010). Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine, 31, 513–539.

    Article  CAS  Google Scholar 

  12. Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, N. K., Ritchard, N. T., Hartzfeld, P. W., & Riechel, T. L. (1998). High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural and Food Chemistry, 46, 1887–1892.

    Article  CAS  Google Scholar 

  13. Bors, W., Michel, C., & Stettmaier, K. (2000). Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters. Archives of Biochemistry and Biophysics, 374, 347–355.

    Article  CAS  Google Scholar 

  14. Hapner, C., Deuster, P., & Chen, Y. (2010). Inhibition of oxidative hemolysis by quercetin, but not other antioxidants. Chemico-Biological Interactions, 186, 275–279.

    Article  CAS  Google Scholar 

  15. Lu, L., Hackett, S. F., Mincey, A., Lai, H., & Campochiaro, P. A. (2006). Effects of different types of oxidative stress in RPE cells. Journal of Cellular Physiology, 206, 119–125.

    Article  CAS  Google Scholar 

  16. Valko, M., Leibfritz, D., Moncol, J., Cronin, M., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(2007), 44–84.

    Article  CAS  Google Scholar 

  17. Silva, J. P., & Coutinho, O. P. (2010). Free radicals in the regulation of damage and cell death—basic mechanisms and prevention. Drug Discoveries & Therapeutics, 4, 144–167.

    CAS  Google Scholar 

  18. Panieri, E., Gogvadze, V., Norberg, E., Venkatesh, R., Orrenius, S., & Zhivotovsky, B. (2013). Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radical Biology & Medicine, 57, 176–187.

    Article  CAS  Google Scholar 

  19. Nakagawa, K., Kiko, T., Miyazawa, T., Sookwong, P., Tsuduki, T., Satoh, A., & Miyazawa, T. (2011). Amyloid β-induced erythrocytic damage and its attenuation by carotenoids. FEBS Letters, 585, 1249–1254.

    Article  CAS  Google Scholar 

  20. Augustyniak, K., Zavodnik, I., Palecz, D., Szosland, K., & Bryszewska, M. (1996). The effect of oxidizing agents and diabetes mellitus on the human red blood cell membrane potential. Clinical Biochemistry, 29, 283–286.

    Article  CAS  Google Scholar 

  21. Sola, E., Vaya, A., Martinez, M., Moscardo, A., Corella, D., Santaolaria, M. L., Espana, F., & Hernaadnez-Mijares, A. (2009). Erythrocyte membrane phosphatidylserine exposure in obesity. Obesity, 17, 318–322.

    Article  CAS  Google Scholar 

  22. Messarah, M., Saoudi, M., Boumendjel, A., Boulakoud, M. S., & Feki, A. E. (2011). Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environmental Toxicology and Pharmacology, 31, 33–41.

    Article  CAS  Google Scholar 

  23. Tsuda, K. (2013). Chronic kidney disease predicts impaired membrane microviscosity of red blood cells in hypertensive and normotensive subjects. International Heart Journal, 54, 154–159.

    Article  CAS  Google Scholar 

  24. Spengler, M. I., Svetaz, M. J., Leroux, M. B., Bertoluzzo, S. M., Carrara, P., Van Isseldyk, F., Petrelli, D., Parente, F. M., & Bosch, P. (2013). Erythrocyte aggregation in patients with systemic lupus erythematosus. Clinical Hemorheology and Microcirculation, 47, 279–285.

    Google Scholar 

  25. Lang, E., Qadri, S. M., & Lang, F. (2012). Killing me softly—suicidal erythrocyte death. The International Journal of Biochemistry & Cell Biology, 44, 1236–1243.

    Article  CAS  Google Scholar 

  26. Fibach, E., & Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current Molecular Medicine, 8, 609–619.

    Article  CAS  Google Scholar 

  27. Amer, J., Ghoti, H., Rachmilewitz, E., Koren, A., Levin, C., & Fibach, E. (2006). Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. British Journal of Haematology, 132, 108–113.

    Article  CAS  Google Scholar 

  28. Chirico, E. N., & Pialoux, V. (2012). Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life, 64, 72–80.

    Article  CAS  Google Scholar 

  29. Minetti, M., Agati, L., & Malorni, W. (2007). The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases. Cardiovascular Research, 75, 21–28.

    Article  CAS  Google Scholar 

  30. Nikolaidis, M. G., & Jamurtas, A. Z. (2009). Blood as a reactive species generator and redox status regulator during exercise. Archives of Biochemistry and Biophysics, 490, 77–84.

    Article  CAS  Google Scholar 

  31. Somjee, S. S., Warrier, R. P., Thomson, J. L., Ory-Ascani, J., & Hempe, J. M. (2005). Advanced glycation end-products in sickle cell anaemia. British Journal of Haematology, 128, 112–118.

    Article  CAS  Google Scholar 

  32. Islambekov, Y. S., Mavlyanov, S. M., Kamaev, F. G., & Ismailov, A. I. (1994). Phenolic compounds of sumac. Chemistry of Natural Compounds, 30, 37–39.

    Article  Google Scholar 

  33. Oszmiański, J., Wolniak, M., Wojdylo, A., & Wawer, I. (2007). Comparative study of polyphenolic content and antiradical activity of cloudy and clear apple juices. Journal of the Science of Food and Agriculture, 87(2007), 573–579.

    Article  Google Scholar 

  34. Gabrielska, J., Sekowski, S., Zukowska, I., Przestalski, S., & Zamaraeva, M. (2012). The modified action of triphenyllead chloride on UVB-induced effects in albumin and lipids. Ecotoxicology and Environmental Safety, 89, 36–42.

    Article  Google Scholar 

  35. Jang, M. H., Kim, H. Y., Kang, K. S., Yokozawa, T., & Park, J. H. (2009). Hydroxyl radical scavenging activities of isoquinoline alkaloids isolated from Coptis chinensis. Archives of Pharmacal Research, 32, 341–345.

    Article  CAS  Google Scholar 

  36. Nakagawa, T., & Yokozawa, T. (2002). Direct scavenging of nitric oxide and superoxide by green tea. Food and Chemical Toxicology, 40, 1745–1750.

    Article  CAS  Google Scholar 

  37. Devi, K. P., Suganthy, N., Kesika, P., & Pandian, S. K. (2008). Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and microbial activity against food borne bacteria in relation to polyphenolic content. BMC Complementary and Alternative Medicine, 8, 38. doi:10.1186/1472-6882-8-38.

    Article  Google Scholar 

  38. Pedraza-Chaverrí, J., Barrera, D., Maldonado, P. D., Chirino, Y. I., Macías-Ruvalcaba, N. A., Medina-Campos, O. N., Castro, L., Salcedo, M. I., & Hernández-Pando, R. (2004). S-Allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo. BMC Clinical Pharmacology, 4, 5. doi:10.1186/1472-6904-4-5.

    Article  Google Scholar 

  39. Gomes, A., Fernandes, E., & Lima, J. L. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65, 45–80.

    Article  CAS  Google Scholar 

  40. Halliwell, B. (2011). Free radical and antioxidants—quo vadis? Trends in Pharmacological Sciences, 32, 125–130.

    Article  CAS  Google Scholar 

  41. Foti, M. C. (2007). Antioxidant properties of phenols. The Journal of Pharmacy and Pharmacology, 59, 1673–1685.

    Article  CAS  Google Scholar 

  42. Al-Sehemi, A. G., & Irfan, A. (2013). Effect of donor and acceptor groups on radical scavenging activity of phenol by density functional theory. Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.06.019.

    Google Scholar 

  43. Nadour, M., Michaud, P., & Moulti-Mati, F. (2012). Antioxidant activities of polyphenols extracted from olive (Olea europaea) of chamlal variety. Applied Biochemistry and Biotechnology, 167, 1802–1810.

    Article  CAS  Google Scholar 

  44. Jalal, T. K., Ahmed, I. A., Mikail, M., Momand, L., Draman, S., Isa, M. L., Abdull Rasad, M. S., Nor Omar, M., Ibrahim, M., & Abdul Wahab, R. (2015). Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (breadfruit) of underutilized tropical fruit extracts. Applied Biochemistry and Biotechnology, 175, 3231–3243.

    Article  CAS  Google Scholar 

  45. Feng, H. L., Tian, L., Chai, W. M., Chen, X. X., Shi, Y., Gao, Y. S., Yan, C. L., & Chen, Q. X. (2014). Isolation and purification of condensed tannins from flamboyant tree and their antioxidant and antityrosinase activities. Applied Biochemistry and Biotechnology, 173, 179–192.

    Article  CAS  Google Scholar 

  46. Williamson, E. M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine, 8, 401–409.

    Article  CAS  Google Scholar 

  47. Haslam, E. (2007). Vegetable tannins—lessons of a phytochemical lifetime. Phytochemistry, 68, 2713–2721.

    Article  CAS  Google Scholar 

  48. Kosińska, A., Kamarać, M., Penkacik, K., Urbalewicz, A., & Amarowicz, R. (2011). Interaction between tannins and proteins isolated from broad seeds (Vicia faba Major) yield soluble and non-soluble complexes. European Food Research and Technology, 223, 213–222.

    Article  Google Scholar 

  49. He, Q., Shi, B., & Yao, K. (2006). Interaction of gallotannins with proteins, amino acids, phospholipids and sugars. Food Chemistry, 95, 250–254.

    Article  CAS  Google Scholar 

  50. Beretta, G., Artali, R., Caneva, E., & Facino, R. M. (2011). Conformation of the tridimensional structure of 1,2,3,4,6-pentagalloyl-β-D-glucopyranose (PGG) by 1H NMR, NOESY and theoretical study and membrane interaction in a simulated phospholipid bilayer: a first insight. Magnetic Resonance in Chemistry, 49, 132–136.

    Article  CAS  Google Scholar 

  51. Deliconstantinos, G., Villiotou, V., & Stavrides, J. (1996). Tumour promoter tert-butyl-hydroperoxide induces peroxynitrite formation in human erythrocytes. Anticancer Research, 16, 2969–2980.

    CAS  Google Scholar 

  52. Romero, N., Denicola, A., & Radi, R. (2006). Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life, 58, 572–580.

    Article  CAS  Google Scholar 

  53. Metere, A., Iorio, E., Pietraforte, D., Podo, F., & Minetti, M. (2009). Peroxynitrite signaling in human erythrocytes: synergistic role of hemoglobin oxidation and band 3 tyrosine phosphorylation. Archives of Biochemistry and Biophysics, 484, 173–182.

    Article  CAS  Google Scholar 

  54. Rubbo, H., Trostchansky, A., & O’Donell, V. B. (2009). Peroxynitrite—mediated lipid oxidation and nitration: mechanism and consequences. Archives of Biochemistry and Biophysics, 484, 167–172.

    Article  CAS  Google Scholar 

  55. Zavodnik, I. B., Lapshina, E. A., Zavodnik, L. B., Bartosz, G., Soszynski, M., & Bryszewska, M. (2001). Hypochlorous acid damages erythrocyte membrane proteins and alters lipid bilayer structure and fluidity. Free Radical Biology & Medicine, 30, 363–369.

    Article  CAS  Google Scholar 

  56. Pennathur, S., Maitra, D., Byun, J., Sliskovic, I., Abdulhamid, I., Saed, G. M., Diamond, M. P., & Abu-Soud, H. M. (2010). Potent antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. Free Radical Biology & Medicine, 49, 205–213.

    Article  CAS  Google Scholar 

  57. Özöyaman, B., Grau, M., Kelm, M., Merx, M. W., & Kleinbongard, P. (2008). RBC NOS: regulatory mechanisms and therapeutic aspects. Trends in Molecular Medicine, 14, 314–322.

    Article  Google Scholar 

  58. Riedl, K. M., & Hagerman, A. E. (2001). Tannin-protein complexes as radical scavengers and radical sinks. Journal of Agricultural and Food Chemistry, 49, 4917–4923.

    Article  CAS  Google Scholar 

  59. Koren, E., Kohen, R., & Ginsburg, I. (2010). Polyphenols enhance total oxidant—scavenging capacities of human blood by binding to red blood cells. Experimental Biology and Medicine, 235, 689–699.

    Article  CAS  Google Scholar 

  60. Olchowik, E., Lotkowski, K., Mavlyanov, S., Abdullajanova, N., Ionov, M., Bryszewska, M., & Zamaraeva, M. (2012). Stabilization of erythrocytes against oxidative and hypotonic stress by tannins isolated from sumac leaves (Rhus typhina L.) and grape seeds (Vitis vinifera L.). Cellular & Molecular Biology Letters, 17, 333–348.

    Article  CAS  Google Scholar 

  61. Mertens-Talcott, S. U., Talcott, S. T., & Percival, S. S. (2003). Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. The Journal of Nutrition, 133, 2669–2674.

    CAS  Google Scholar 

  62. Intra, J., & Kuo, S. M. (2007). Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells. Chemico-Biological Interactions, 169, 91–99.

    Article  CAS  Google Scholar 

  63. Mikstacka, R., Rimando, A. M., & Ignatowicz, E. (2010). Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro. Plant Foods for Human Nutrition, 65, 57–63.

    Article  CAS  Google Scholar 

  64. Kowalewska, E., & Litwinienko, G. (2010). Phenolic chain-breaking antioxidants—their activity and mechanisms of action. Postepy Biochemii, 56, 274–283.

    Google Scholar 

  65. Yanai, N., Shiotani, S., Hagiwara, S., Nabetani, H., & Nakajima, M. (2008). Antioxidant combination inhibits reactive oxygen species mediated damage. Bioscience, Biotechnology and Biochemistry, 72, 3100–3106.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zamaraeva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olchowik-Grabarek, E., Mavlyanov, S., Abdullajanova, N. et al. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol 181, 495–510 (2017). https://doi.org/10.1007/s12010-016-2226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2226-1

Keywords

Navigation